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Abstract

We consider mean-field models for data–clustering problems starting from a generalization
of the bounded confidence model for opinion dynamics. The microscopic model includes
information on the position as well as on additional features of the particles in order to develop
specific clustering effects. The corresponding mean–field limit is derived and properties of the
model are investigated analytically. In particular, the mean–field formulation allows the use of
a random subsets algorithm for efficient computations of the clusters. Applications to shape
detection and image segmentation on standard test images are presented and discussed.
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1 Introduction

Particle and kinetic models for consensus and cluster formation appeared in recent literature for
self–organized socio–economic dynamical systems as opinion formation, flocking of birds or fish,
elections and referendums under influence of mass media, etc. See e.g. [5, 11, 16, 18–20, 23, 25, 34],
the review articles [1, 4, 35] and the book [40]. A related research direction is based on using
the consensus features of these models in an artificial way to solve problems of optimization or
segmentation of data in large dimensions [15,28,29,41].

In this paper, we aim at formulating suitable models on the microscopic (or particle) level
as well as on the mean–field (or kinetic) level to describe the partition of a large set of data
in clusters. This problem is also known as data clustering problem and it is widely studied in
many applications like pattern recognition, shape detection and image segmentation problems.
The proposed methods do not need to have fixed a–priori number of clusters and clusters are
characterized by small in–group and large out–group distances.

Since we are interested in modes characterizing distance and qualitative features without addi-
tional physical or socio–economical modeling background the proposed model will generalize the
Hegselmann–Krause (HK) opinion dynamics model [25]. Originally, the HK model was proposed
in a microscopic setting, in one–dimensional spatial and time discrete framework. Several exten-
sions exist, in the sequel we will briefly review the basic model before discussing its extension
towards the image clustering problems.

To this aim, let us consider a group of n particles with a (scalar) initial state xi(0) ∈ R,
i = 1, . . . , n, and the state of each particle varies depending on the state of the others. The key
idea of the Hegselmann–Krause (HK) model [25] is that particles with completely different opinions
do not influence each other, and a sort of mediation occurs among agents whose opinions are within
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a bounded confidence interval described by a parameter ε ≥ 0. Let x(t) = [x1(t), . . . , xn(t)]T be
the state of the system at time t ≥ 0. Then the dynamic of the i–th particle is given by

(1.1)
d

dt
xi(t) =

n∑
j=1

Aij(t, ε) (xj(t)− xi(t)) , i = 1, . . . , n

where A(t, ε) ∈ Rn×n is the time–varying adjacency matrix whose entries are in the form

(1.2) Aij(t, ε) :=


1

σi
, if j ∈ Ni(t, ε)

0, otherwise

with

(1.3) Ni(t, ε) := {j ∈ {1, . . . , n} : |xi(t)− xj(t)| ≤ ε} , i = 1, . . . , n

defining the neighborhood of the i–th particle at time t, and

(1.4) σi :=

|Ni(t, ε)|,
n

the type of interactions. Precisely, when σi = n the interactions are symmetric since Aij = Aji,
∀ i, j, but A is not a stochastic matrix. Instead, when σi = |Ni(t, ε)|, then A is a right stochastic
matrix but interactions are no longer symmetric.

Several works have been proposed in the literature which analyze the properties of the HK
model. For instance, for the analysis in the time discrete setting we refer to [27]. In [7] it is proven
that, during the evolution of the system (1.1), the order of the states is preserved. Thanks to the
definition of the interaction kernel (1.2)–(1.4), if |xi(t)− xi+1(t)| > ε, at some time t, it remains
true for larger times. Therefore, the HK model tends to group the initial states in a finite number
of clusters as proved in [35]. Following [35], we define a cluster C(t) at time t ≥ 0 a subset of
particles separated from all the other particles

Aij(t, ε) 6= 0 for all i, j ∈ C(t), Aij(t, ε) = 0 whenever i ∈ C(t), j /∈ C(t).

In [7, 22, 30] the stability of the dynamical model is investigated. In particular, the fact that the
system converges to a steady profile in finite time is proved in [7]. For further results on the
one–dimensional local and symmetric model we refer also to [8]. We point out that also behavior
of cluster formation in the transient is of interest in the mathematical literature [21].

In [10, 36], the one-dimensional Hegselmann–Krause is generalized to the case of a multi–
dimensional data–set. Subsequently, the multi–dimensional HK model has been used as a tech-
nique to cluster a big amount of data into a small number of subsets with some common fea-
tures [38] and to compare its performance with the k–means algorithm [31]. Recently, in [29, 37]
new approaches to clustering problems and image segmentation have been proposed based on the
Kuramoto model.

Here, we introduce a generalization of the multi–dimensional formulation of the HK model
to solve data clustering problems. This amounts to take into account clustering with respect to
different features. We deal with data having both time dependent and static features. The latter
describe intrinsic properties of a datum, such as the measure of a trustworthy information or the
color intensity of pixels in images. We derive the corresponding mean–field limit and investigate
analytically the properties of the model. In particular, following [2] the mean–field formulation
allows the use of a random subset algorithm for efficient computations of the clusters.

The rest of the manuscript is organized as follows. The microscopic model is introduced at
the beginning of Section 2 and briefly discussed in Section 2.1. The proposed model is still a
microscopic model and we describe the case of large data using a mean–field equation in Section 3.
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Analytical properties of the kinetic equation, such as a–priori estimation on the evolution of the
moments and characterization of the limit distribution, are discussed in Section 3.1. Numerical
evidence of the theoretical results is provided in Section 4.1. Further, we propose applications on
detection and compression of data, such as shape detection, in Section 4.2, and image segmentation,
in Section 4.3. We finally conclude with some remarks and future research directions in Section 5.

2 Microscopic models for data–clustering

Each particle i = 1, . . . , N is endowed with a time–dependent state vector xi = xi(t) as well
as features ci = [ci,1, . . . , ci,d2 ] ∈ Rd2 representing static characteristics of the system, i.e., ci is
independent of time. As a motivation example consider an image segmentation problem where xi
are the center point of a pixel or voxels of the image and ci the color coding at the center point.

As in the HK model we define the neighborhood of the particles by

(2.1) Ni(t, ε1, ε2) :=
{
j ∈ {1, . . . , n} : ‖xi(t)− xj(t)‖Rd1

≤ ε1, ‖ci − cj‖Rd2
≤ ε2

}
, i = 1, . . . , n

and Aij(t, ε1, ε2) are entries of the time–varying matrix A(t, ε1, ε2) ∈ Rn×n defined as

(2.2) Aij(t, ε1, ε2) :=


1

σi
, if j ∈ Ni(t, ε1, ε2)

0, otherwise

with σi defined analogously to (1.4). Here, ε1 ≥ 0 and ε2 ≥ 0 are two bounded confidence levels.
The two metrics ‖·‖Rd1 and ‖·‖Rd2 need to be properly defined according to the specific context
of the problem. Then, the mathematical model for any t ≥ 0 is given by

ci,k(t) = ci,k(0), i = 1, . . . , n, k = 1, . . . , d2,(2.3)

d

dt
xi,k(t) =

n∑
j=1

Aij(t, ε1, ε2) (xj,k(t)− xi,k(t)) , i = 1, . . . , n, k = 1, . . . , d1(2.4)

and initial condition ci,k(0) = c0i,k and xi,k(0) = x0
i,k. Notice that ε2 > maxi,j=1,...,n ‖ci − cj‖Rd2

is
a sufficient condition to reduce model (2.4) to the multi–dimensional version of the HK model (1.1).

2.1 Properties of the microscopic model

Existence and convergence of solutions to system (2.4) can be established by using same techniques
as in [8] where the original HK in the one–dimensional case was analyzed. In fact, system (2.3)-
(2.4) belongs to the same class of state-switched systems.

In the case of symmetric interactions we can recover from the previous model similar results
on the moment behavior as presented for the HK model in [8,26]. We only record the results here
since the proofs are slight variations of existing results (see for example [8]).

Define the moments m1(t) ∈ Rd1 and m2(t) ∈ Rd1×d1 with respect to the time dependent
feature as

(2.5) m1(t) :=

n∑
i=1

xi(t), m2(t) :=

n∑
i=1

xi(t)⊗ xi(t),

then the following result holds true.

Lemma 2.1. Let (xi(t))1≤i≤n be the solution of the dynamical system (2.4) with symmetric in-
teractions, i.e. σi = n in (2.2). Then, we obtain

m1(t) = m1(0),
d

dt
(m2(t))kk ≤ 0, k = 1, . . . , d1.
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Corollary 2.2. Let (xi(t))1≤i≤n be the solution of the dynamical system (2.4). Assume that ε1
and ε2 are sufficiently large so that interactions are global. Then the first moment is conserved
and the following decay estimate holds:

d

dt
(m2(t))k` =

2

n
(m1(0))k (m1(0))` − 2 (m2(t))k` ,

lim
t→∞

(m2(t))k` =
(m1(0))k (m1(0))`

n
.

Later, we will show that similar results hold for the continuous model. Some remarks on further
properties concerning the particle model (2.4) are in order.

Remark 2.3.

• Formation of clusters in the large time behavior is extensively investigated in the review
article [35] for general systems of the form (2.4). However, number of clusters cannot be
a–priori predicted starting from a given initial configuration.

• In the non–symmetric case, conservation of the first moment does not hold true. Also, in
general, it is not possible to show the decay of the second moment although clustering still
appears, see [35].

• Extensions of the model to take into account non static features are obtained by including
an interaction term on the right hand side of (2.3). The determination of such interaction
term, however, would be rather problem dependent and in this paper we will not explore
further this direction.

3 Mean–field description

In the case of many particles we derive the formal mean–field equation. Let Ω1 ⊆ Rd1 , Ω2 ⊆ Rd2
be compact domains and Ω = Ω1 × Ω2. For n ≥ 1 we denote by fn : R+ × Ω → R the empirical
distribution on Ω ⊂ Rd1×d2 given by

fn(t,x, c) :=
1

n

n∑
i=1

δ(x− xi(t))δ(c− ci(t)).

Let us consider a test function ϕ(x, c) ∈ C1
0 (Ω), i.e. the space of continuous and compactly

supported functions on Ω with continuous derivative. Denote by 〈·, ·〉 the integration of fn against
the test function ϕ on Ω. We have

d

dt
〈fn(t), ϕ〉 =

1

n

n∑
i=1

d

dt
ϕ(xi(t), ci(t)) =

1

n

n∑
i=1

1

σi

∑
j∈Ni(t,ε1,ε2)

∇xϕ(xi(t), ci(t)) · (xj(t)− xi(t))

=

〈
fn(t),

1

nσ(t,x, c)

n∑
j=1

χε1 (‖xj(t)− x‖)χε2 (‖cj(t)− c‖) (xj(t)− x) · ∇xϕ

〉

where we defined

χε(x) =

{
1, x ≤ ε
0, else

and we used the fact that equation (2.4) can be re-written as

d

dt
xi(t) =

1

nσ(t,xi(t), ci(t))

n∑
j=1

χε1 (‖xj(t)− xi(t)‖)χε2 (‖cj(t)− ci(t)‖) (xj(t)− xi(t)) ,
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with σi = nσ(t,xi(t), ci(t)) and

σ(t,xi(t), ci(t)) =
1

n

n∑
j=1

χε1 (‖xj(t)− xi(t)‖)χε2 (‖cj(t)− ci(t)‖) .

We can easily compute

σ(t,x, c) =
1

n

n∑
j=1

χε1 (‖xj(t)− x‖)χε2 (‖cj(t)− c‖)

= 〈χε1 (‖y − x‖)χε2 (‖z− c‖) , δ(y − xj(t))δ(z− cj(t))〉∫
Ω

χε1 (‖y − x‖)χε2 (‖z− c‖) fn(t,y, z) dz dy,

and similarly

1

nσ(t,x, c)

n∑
j=1

χε1 (‖xj(t)− x‖)χε2 (‖cj(t)− c‖) (xj(t)− x)

=
1

σ(t,x, c)

∫
Ω

χε1 (‖y − x‖)χε2 (‖z− c‖) (y − x)fn(t,y, z ) dz dy.

Collecting these formal computations, after integration by part in x, we obtain the weak form of
the mean–field equation

d

dt
〈fn, ϕ〉+

〈
∇x ·

(
fn(t,x, c)

∫
Ω

χε1 (‖y − x‖)χε2 (‖z− c‖)
σ(t,x, c)

(y − x)fn(t,y, z) dz dy

)
, ϕ

〉
= 0.

If we now define a kernel A as continuous extension of the adjacency matrix (2.2)

(3.1) Aε1,ε2(t,x, c,y, z) =
χε1(‖y − x‖)χε2 (‖z− c‖)

σ(t,x, c)
,

and V given by

(3.2) Vε1,ε2(t,x, c) =

∫
Ω

Aε1,ε2(t,x, c,y, z)(y − x)f(t,y, z) dz dy

in the limit n → ∞, assuming that the empirical measure fn(t,x, c) converge to f(t,x, c), we
formally obtain the strong form of the kinetic equation as

(3.3) ∂tf(t,x, c) +∇x · (Vε1,ε2(t,x, c)f(t,x, c)) = 0.

Rigorous analytical results on convergence in the case of ε2 very large and symmetric inter-
actions have been already discussed, for instance in [13, 14]. These results guarantee convergence
of the distribution f in (3.3) to a probability limit distribution f∞, provided the initial distribu-
tion f0 at time t = 0 has finite second moment and A is a non–negative, bounded, measurable
and symmetric kernel. Observe that these assumptions are verified also in our framework. For
a more detailed discussion on analytical results on convergence in mean–field models, we refer
e.g. to [12,16]

We briefly discuss the relation to similar kinetic models.
In [9] the analysis of a homogeneous kinetic model for opinion dynamics under bounded con-

fidence is studied. Therein, the model is derived by using a Boltzmann–like approach with in-
stantaneous binary interactions describing compromise. An analogous derivation of the kinetic
equation (3.3) is also possible using a binary interaction model based on an explicit Euler dis-
cretization of the underlying particle dynamics (2.4) with n = 2 and performing a grazing collision
limit. We omit this computation.
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In [9] the authors prove the weak convergence of the solution to a convex combination of Dirac
delta functions. In [13] a similar asymptotic distribution is found for the mean–field limit of the
classical Hegselmann–Krause model.

A further symmetric clustering model with weighted interactions with respect a fixed number
of closest neighbors and corresponding mean–field limit has been introduced in [3]. Moments and
long–time behavior could also be studied therein. Finally, models for other applications are also
able to cluster information e.g. in traffic flow modeling [42] where the physical acceleration has
the role of the bounded confidence.

3.1 Properties of the mean–field model

As preliminary remark we observe that the marginal distribution f̃ c(t, c) :=
∫

Ω1
f(t,x, c)dx is

preserved in time by the kinetic equation (3.3). Instead, it is easy to check that the marginal dis-
tribution f̃x(t,x) :=

∫
Ω2
f(t,x, c)dc is not stationary and its behavior in time is still influenced by

a c dependent kernel. These considerations are direct consequence of the microscopic model (2.4)
and (2.3). For this reason, in the following results and if not otherwise stated, we mainly focus on
the analysis of moments with respect to the variable x.

As in the discrete case we define the p–th moment of the kinetic distribution with respect to
x as

〈xα〉(t) =

∫
Ω

xαf(t,x, c)dxdc, |α| = p ∈ N, αi ∈ N.

Here, we used the following multi–index notation xα = xα1
1 · · ·x

αd1

d and |α| =
∑d1
i=1 αi. In

particular, for each k, j = 1, . . . , d1 we will denote

uk(t) = 〈xα〉(t), |α| = 1, αi = δik, i = 1, . . . , d1

Ekj(t) = 〈xα〉(t), |α| = 2, αi = δik + δij , i = 1, . . . , d1.

the first moment and the second moment, respectively. Then, for a symmetric kernel A we obtain
by the integration of the kinetic equation

Lemma 3.1. Let f(t,x, c) be the solution of the model (3.3) with symmetric kernel A, i.e.,
σ(t,x, c) = 1. Then, the following a–priori estimates hold true:

d

dt
uk(t) = 0,

d

dt
Ekk(t) ≤ 0, |Ekj(t)| ≤

1

2
(Ekk + Ejj) (0)

for each k, j = 1, . . . , d1.

Proof. For each fixed k = 1, . . . , d1 we have

d

dt
uk(t) = −

∫
Ω

xk∇x · (Vε1,ε2(t,x, c)f(t,x, c)) dxdc

=

∫
Ω

∫
Ω

χε1(‖y − x‖)χε2(‖z− c‖)(yk − xk)f(t,y, z)f(t,x, c)dydzdxdc = 0.

The last term vanishes due to anti–symmetry of the integrand by the interchange of variables
x↔ y. The second statement follows by observing that for each k = 1, . . . , d1 we have

d

dt
Ek(t) = −

∫
Ω

x2
k∇x · (Vε1,ε2(t,x, c)f(t,x, c)) dxdc

= −
∫

Ω

∫
Ω

χε1(‖y − x‖)χε2(‖z− c‖)(yk − xk)2f(t,y, z)f(t,x, c)dydzdxdc ≤ 0.

Hence, we obtain

0 ≤ |Ekj(t)| ≤
∫

Ω

|xkxj | f(t,x, c)dxdc ≤ 1

2
(Ekk + Ejj) (t) ≤ 1

2
(Ekk + Ejj) (0).
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Instead, in the case of global interactions and for a general kernel A and we have

Corollary 3.2. Assume that ε1 and ε2 are sufficiently large so that A(t,x, c,y, z; ε1, ε2) = 1, for
all x,y ∈ Ω1, c, z ∈ Ω2 and t ≥ 0. Then, for all k, j = 1, . . . , d1, the following relations hold true:

uk(t) = uk(0), ∀ t ≥ 0 and Ekj(t)
t→∞−−−→ uk(0)uj(0).

Proof. Multiplying (3.3) by xα with |α| = p ∈ N, and integrating over Ω, we compute

d

dt
〈xα〉(t) = −p〈xα〉(t) +

d1∑
`=1

α`u`(t)〈xα(`)

〉(t)

where α(`) = α − e` with e` being the `–th element of the standard basis vector of Rd1 and∣∣α(`)
∣∣ = p− 1. Then, for p = 1 we still have have conservation of the first moment since we obtain

d

dt
uk(t) = −uk(t) + uk(t) = 0, k = 1, . . . , d1.

For p = 2 we have

d

dt
Ekj(t) = −2Ekj(t) + 2uk(t)uj(t) = −2Ekj(t) + 2uk(0)uj(0), k, j = 1, . . . , d1

and therefore

Ekj(t) = Ekj(0)e−2t + uk(0)uj(0)
(
1− e−2t

) t→∞−−−→ uk(0)uj(0), k, j = 1, . . . , d1.

Observe that, compared to the local interaction case analyzed in Theorem 3.1 where in general
the energy decay property of all second order moments is not guaranteed, in global interactions
also the mixed second order moments decay in time. In other words, while in the local interaction
model only variances go to zero, in the global interaction model both variances and covariances
go to zero in the large time behavior.

Lemma 3.1 and Corollary 3.2 suggest that for t→∞ any initial distribution will tend to a sta-
tionary distribution that is concentrated on a finite number of points in Ω1 and represents therefore
clusters. Hence, in the following we investigate the asymptotic distribution of the model (3.3).

Lemma 3.3. Let ε1 and ε2 be arbitrary positive bounded confidence levels. Then, the distribution

(3.4) f∞(x, c) =

n1∑
k=1

fkδ(x− xk)

n2(k)∑
`=1

δ(c− ck`)

with fk > 0 and
∑n1

k=1

∑n2(k)
`=1 fk = 1 is a weak stationary solution of the model (3.3) if and only

if either ‖xi − xk‖Rd1 > ε1 for all i 6= k or
∥∥cij − ck`

∥∥
Rd2

> ε2 for all i 6= k, for all j, `, or both
hold true .

Proof. Let us assume that at least one of ‖xi − xk‖Rd1 > ε1 for all i 6= k and
∥∥cij − ck`

∥∥
Rd2

> ε2
for all i 6= k, for all j, `, is verified and prove that f∞ is the asymptotic distribution of the
equation (3.3), i.e. given a test function ϕ ∈ C1

0 (Ω)∫
Ω

ϕ(x, c)∇x · (Vε1,ε2(t,x, c)f∞(x, c)) dxdc = 0.

We obtain∫
Ω

ϕ(x, c)∇x · (Vε1,ε2(t,x, c)f∞(x, c)) dxdc = −
n1∑
k=1

fk

n2(k)∑
`=1

V(t,xk, ck` ; ε1, ε2) · ∇xϕ(x, c)|x=xk

7



= −
n1∑
k=1

f2
k

n2(k)∑
`=1

(xk − xk)

σ(xk, ck`)
· ∇xϕ(x)|x=xk

= 0.

Conversely, assume that f∞ as in (3.4) is the steady state of (3.3). Assume by contradiction that
there exist k, i ∈ {1 . . . , n1} such that ‖xk − xi‖Rd1 ≤ ε1 and ` ∈ {1 . . . , n2(k)}, j ∈ {1 . . . , n2(i)}
such that

∥∥cij − ck`
∥∥
Rd2
≤ ε2. Then, using similar computations as before we obtain∫

Ω

ϕ(x, c)∇x · (Vε1,ε2(t,x, c)f∞(x, c)) dxdc =− fkfi
(xk − xi)

σ(xk, ck`)
· ∇xϕ(x, c)|x=xk

− fifk
(xi − xk)

σ(xi, cij )
· ∇xϕ(x, c)|x=xi

6= 0

which contradicts the hypothesis.

Lemma 3.4. Assume that ε1 and ε2 are sufficiently large so that A(t,x, c,y, z; ε1, ε2) = 1, for all
x,y ∈ Ω1, c, z ∈ Ω2 and t ≥ 0. Then, the distribution

f∞(x, c) = δ(x− x̄)f̃ c(0, c) =

d1∏
k=1

δ(xk − x̄k)f̃ c(0, c)

with f̃ c(0, c) =
∫

Ω1
f0(x, c)dx is a weak stationary solution of the model (3.3) if and only if

x̄k = uk(0).

Proof. Substituting the expression of f∞ in the weak form of the kinetic equation, integrating by
parts and using the fact that for ε1 and ε2 large enough so that

Vε1,ε2(t,x, c) =

∫
Ω

yf(t,y, z)dzdy − x =

∫
Ω

yf0(y, z)dzdy − x

we obtain∫
Ω

ϕ(x, c)∇x · (Vε1,ε2(t,x, c)f∞(x, c)) dxdc =

∫
Ω2

f̃(c)

(
x̄−

∫
Ω

yf0(y, z)dzdy

)
· ∇xϕ(x, c)|x=x̄dc

which is zero if x̄ =
∫

Ω
yf0(y, z)dzdy.

Remark 3.5. As direct consequence of Theorem 3.3 and Theorem 3.4 we have that taking ε2
sufficiently large or an initial distribution f0(x, c) being atomic with respect the second variable,
the same quantized steady–state of the kinetic formulation of the microscopic model (1.1) are
preserved, cf. [13].

Remark 3.6. In Theorem 3.3 the number of clusters n1, as well the values fj and the positions xj
of the clusters, are functions of the initial distribution f0(x, c) and of the bounded confidence levels
ε1 and ε2. As pointed–out also in [14], in general it is not possible to predict the number of Dirac
deltas in the asymptotic configuration from a given initial distribution. However, for ε2 sufficiently
large and assuming Ω = [0, 1]d, the number of clusters is 1 ≤ ñ ≤ b 1

εd1
c. This consideration is also

observed at the Boltzmann level, see [9].

4 Numerical experiments and applications

The theoretical results on the asymptotic behavior of the mean–field equation (3.3) introduced
in the previous section are here also numerically investigated. Moreover, we show the efficiency
of the model as technique to solve realistic data–clustering problems and to this end we focus on
applications to the field of shape detection and image segmentation.
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Algorithm 1 Mean Field Interaction Algorithm for the kinetic equation (3.3).

1: Given N sample pairs (x0
i , c

0
i ), with i = 1, . . . , N computed from the initial distribution f0(x, c)

and M ≤ N ;
2: for k = 0 to ktot − 1 do
3: for i = 1 to N do
4: sample M data j1, . . . , jM uniformly without repetition among all data;
5: compute

Ā(xki , c
0
i ) =

M∑
`=1

Aε1,ε2(xki , c
0
i , x

k
j`
, c0j`), x̄ki =

M∑
`=1

Aε1,ε2(xki , c
0
i , x

k
j`
, c0j`)

Ā(xki , c
0
i )

xj`

6: compute the data change

xk+1
i = xki

(
1−∆tĀ(xki , c

0
i )
)

+ ∆tĀ(xki , c
0
i )x̄

k
i

7: end for
8: end for

In order to efficiently solve the kinetic model (3.3) we employ the Mean Field Interaction
Algorithm introduced in [2] which is based on random subset evaluation of the kernel term
Aε1,ε2(t,x, c,y, z) given in (3.1). The algorithm used in the numerical experiments is summa-
rized by the steps in Algorithm 1 for a time interval [0, T ] discretized in ktot subintervals of size
∆t. The computational cost of the algorithm is O = (MN), where M is the size of the subset
of interacting particles, and for M = N we obtain the explicit Euler scheme for the original N
particle system (2.4) whose cost is O(N2). For further details on the Mean Field Interaction
Algorithm we refer to [2].

4.1 Numerical steady–states and moment evolution

We use the Mean Field Interaction Algorithm to numerically investigate the properties of the
kinetic model proved in the previous section. We analyze two typical situations which lead to the
two applications we show later in this section.

4.1.1 Constant static feature.

First, we consider an initial distribution being the uniform distribution with respect to x and a
constant distribution along the static feature variable c, i.e. f0(x, c) = χ[0,1]d1 (x). This choice
is obviously also consistent with considering the bounded confidence level ε2 very large. We
show that, as discussed in Remark 3.5, equation (3.3) provides the same steady–states of the
Hegselmann–Krause model.

One–dimension. The numerical steady–states of the mean–field equation (3.3) are first com-
puted for the one–dimensional case and compared to the steady–states of the microscopic model (2.4).
Observe that, under the assumption of an initial constant distribution along c, the asymptotic
behavior of (2.4) is the classical one prescribed by the one–dimensional Hegselmann–Krause
model (1.1). The evolution in time of the first and second moment is also provided.

In Figure 4.1 we show the steady–state provided by the mean–field kinetic model (3.3) for the
one–dimensional initial uniform distribution on [0, 1]. The final time is T = 20 and the time step
is ∆t = 0.5. We consider N = 5 × 105 particles in the Monte Carlo method so that we reduce
error due to the sampling. The number of interacting particles is taken as M = 10. We show the
results for two values of the confidence bound, ε1 = 0.5 in the left panel and ε1 = 0.15 in the right
panel. The evolution of the distributions up to final time is showed by normalizing with respect
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Figure 4.1: Trend to the steady–state of the one–dimensional Hegselmann–Krause model (1.1) with
n = 100 agents equally spaced at initial time and non–symmetric interactions (top row) and
of the mean–field model (3.3) computed with Algorithm 1 (bottom row) up to final time
T = 20. Left panels show the case for ε1 = 0.5, the right panels show the case for ε1 = 0.15.

to the maximum value at each fixed time. For ε1 = 0.5 we observe the formation of a consensus
state in large time behavior. In fact, the final distribution is a Dirac delta centered in the initial
value of the first moment. For ε1 = 0.15, instead, three clusters arise at equilibrium, similarly
the classical Hegselmann–Krause model for the same confidence bounds and equally distributed
initial data.

As observed in Figure 4.2, for both values of the bounded confidence level, we have conservation
of the first moment and energy dissipation in time. Although we are using a non–symmetric model,
the first moment is preserved during the time evolution, with deviation of order 10−4 from the
initial value, since the initial distribution is symmetric. The fluctuations in the first moment are
due to the stochastic method.

In Figure 4.3 we show some results of a simple analysis of Algorithm 1 with respect to the
values of M , i.e. the size of the random subset of interacting particles. Left panel shows the trend
to the steady–state of the kinetic model computed with Algorithm 1 and same parameters as in
the right plot of Figure 4.1. However, here we consider N = 2 × 104 and M = 2. The same
equilibrium state is reached but with a faster transient. The dependence of the velocity to the
formation of cluster on the size M of the random subset is showed in the right panel of Figure 4.3.
The velocity to equilibrium decreases as M increases. In particular, the M = 2 case, where each
particle is enforced to align to the velocity of the other particle instead of their “mean”, exhibits
the fastest convergence. This analysis suggests that, although model (3.3) has a convolution
structure and in principle can be efficiently solved with a Fast Fourier Transform at a O(N logN)
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Figure 4.2: Evolution in time of the first moment (left) and of the second moment (right) for the two
values of the bounded confidence level ε1 = 0.5 (dashed lines) and ε1 = 0.15 (solid lines).
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Figure 4.3: Left: trend to the steady–state of the mean–field model (3.3) computed with Algorithm 1
with N = 2 × 104, M = 2, ε1 = 0.15 and up to final time T = 20. Right: energy decay of
the mean–field model (3.3) for several values of interacting particles M .

cost, Algorithm 1 may be preferable since it has a comparable (or even lower) computational cost
and it can be applied to more general kernels where the convolution structure is lost.

Two–dimensions. We also show one example of the numerical steady–states of the mean–field
equation (3.3) in the two–dimensional case. Again we employ Algorithm 1. Figure 4.4 shows the
steady–state for the particle density and the kinetic density at time t = 4 and final time T = 50.
We use N = 10000 particles and the time step is ∆t = 0.5. Using the Mean Field Interaction
Algorithm 1, the number of interacting particles is taken as M = 10. We show the results for one
value of the confidence bound, ε1 = 0.15 which leads to the formation of 8 clusters at equilibrium.
The evolution in time of the two–dimensional moments is also provided in Figure 4.5. We still
observe conservation of the first moment, due to the initial symmetric distribution, and decay in
time for the two non–mixed second moments.

4.1.2 Non–constant static feature.

Next, we consider a non–constant initial distribution along the variable c. We consider a one–
dimensional setting both along x and c since the goal of this experiment is to provide evidence
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Figure 4.4: Particle solution (left plots) with N = 10000 and kinetic density (right plots). Results
are provided at time t = 4 (top row) and final time T = 50 (bottom row). The bounded
confidence level is ε1 = 0.15.
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Figure 4.5: Evolution in time of the two–dimensional first moments (left) and second moments (right)
for the bounded confidence level ε1 = 0.15.

of the influence of the static feature on the clustering process. The initial kinetic distribution it
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Figure 4.6: Top row: particles and kinetic density at initial time (left plot) and at equilibrium (right
plot). Bottom row: at left, analysis of the distances between clusters in x (blue line with
circle markers) and c direction (red line with triangle markers); at right, plot of the marginals.
Confidence levels are ε1 = 0.15 and ε2 = 0.025.

given as a tensor product between a uniform and Gaussian distribution so that

f0(x, c) = χ[0,1](x)
1√

2πσ2
exp

(
− (c− µ)2

2σ2

)
,

with mean µ = 0.5, and variance σ2 = 0.3. See the top left plot in Figure 4.6. All the simulations
are performed by using N = 5000 samples up to equilibrium.

In this experiment, we expect that the behavior at equilibrium is influenced also by the inter-
actions with respect to the static feature variable due to the corresponding characteristic function
in the kernel (3.1). In Figure 4.6 we show the results provided by using ε1 = 0.15 and ε2 = 0.025.
The top left plot shows particles and kinetic density at equilibrium. Observe that, compared to the
case with constant distribution along the static feature, the low value of ε2 allows for the formation
of more clusters, precisely 8. Clusters arise because either their distance in x direction is larger
than the confidence level ε1 or the minimum distance in c direction is larger than ε2. This consid-
eration is analyzed in the bottom left plot of Figure 4.6 where the blue line with circle markers
shows the distance in x between two adjacent clusters and the red line with triangle markers the
minimum distance between the static features of particles being in two adjacent clusters. Observe
that when the distance in x is lower than the value ε1, the corresponding distance between the
static features is larger than ε2, and therefore cluster is no longer possible. Moreover, we notice
that time to reach equilibrium is larger due to two levels of clustering. Finally, the bottom right
plot of Figure 4.6 shows the two marginal distributions.
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Figure 4.7: Particle and kinetic density at equilibrium with confidence levels ε1 = 0.15, ε2 = 0.1 (left)
and ε1 = 1, ε2 = 0.025 (right).

In Figure 4.7 we show the behavior at equilibrium by considering two different pairs of confi-
dence levels. In the left plot, ε1 = 0.15 and ε2 = 0.1. Here ε2 is large enough to not influence the
clustering process and in fact we recover 3 clusters, exactly the same provided in Figure 4.1 when
the initial kinetic distribution was constant in c. In the right plot, ε1 = 1 and ε2 = 0.025. In this
case, ε1 is very large and we show the formation of clusters at equilibrium when only clustering
due to the static feature is allowed.

4.2 Clustering and shape detection

The property of the equation (3.3), analytically studied in Section 3.1 and numerically investi-
gated in Section 4.1, of having quantized steady–states makes the model suitable for solving data
clustering problems. In particular, in this section we use the kinetic model as technique for shape
detection.

Shape detection can be considered as a branch of pattern recognition problems that focuses on
the discovering of previously unknown patterns in a big set of data. Machine learning and many
clustering algorithms have already been applied to this class of problems, such as the k–means
algorithm which however suffers from the necessity of defining a–priori the number of clusters.
Instead, as already pointed out, opinion dynamics based models automatically find the number of
clusters as functions of the confidence value.

More specifically, in this section we apply the models introduced in Section 2 to the example of
a character recognition. We consider a letter “A” which is composed by n two-dimensional points
L = {xi}ni=1 defining three segments in Ω = [0, 1]2. To each of these points we apply an additive
noise distributed according to a uniform or a Gaussian distribution. We obtain a new set of n
points

x̃i = xi + αθi, α > 0, θi ∼ U(−1, 1) or θi ∼ N (0, 1)

which define the noisy pattern. Here, the value α represents the percentage of noise and it is also
chosen in such a way that x̃i ∈ Ω, i = 1, . . . , n. The points {x̃i}ni=1 are used as initial condition of
the model. They are seen as samples from a distribution defining the noisy pattern and the Mean
Field Interaction Algorithm 1 is employed in order to solve the kinetic model.

The goal of this example is to cluster the noisy data into a set of points which give information
on the shape of the exact pattern to be detected. This can be considered also as a dimensionality
reduction problem which could help other algorithms to recognize the unknown pattern efficiently
by using information on the position of the clusters. Here the efficiency of the results is studied
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Table 1: Number of clusters and errors depending on the bounded confidence value and the percentage
of the noise when uniformly distributed.

α = 5% α = 7.5% α = 10%
ε1 E ñ ε1 E ñ ε1 E ñ

0.03 1.25e-02 30 0.03 3.47e-02 51 0.06 2.64e-02 11
0.04 4.10e-03 16 0.05 1.21e-02 14 0.07 1.48e-02 8
0.05 4.00e-03 12 0.07 7.70e-03 8 0.08 1.12e-02 8
0.06 4.60e-03 9 0.09 7.90e-03 8 0.09 1.63e-02 5
0.07 5.40e-03 8 0.11 1.66e-02 3 0.10 1.63e-02 5

Table 2: Number of clusters and errors depending on the bounded confidence value and the percentage
of the noise when normally distributed.

α = 5% α = 5.5% α = 6%
ε1 E ñ ε1 E ñ ε1 E ñ

0.05 4.44e-02 23 0.05 4.73e-02 24 0.05 6.37e-02 30
0.06 1.36e-02 11 0.06 2.62e-02 13 0.06 4.16e-02 16
0.065 6.40e-03 9 0.065 1.63e-02 11 0.07 2.12e-02 9
0.07 6.70e-03 7 0.0675 7.40e-03 10 0.075 9.70e-03 7
0.08 8.50e-03 7 0.07 8.00e-03 9 0.08 9.20e-03 7
0.09 1.00e-02 6 0.08 9.80e-03 7 0.085 1.10e-02 5

by means of the following measure:

E(ε1, ε2, α) =
1

ñ

ñ∑
k=1

min
x∈L
‖Ck − x‖2

where {Ck}ñk=1 is the position of clusters in Ω, ñ the number of clusters at equilibrium. The
quantity E measures for each cluster the minimum 2–norm distance to the exact pattern and then
computes the normalized 1–norm of these quantities. The definition of the measure E is inspired
by the idea of computing an average of the minimum distances between the clusters and the shape
L, when formation of multiple clusters distributed close the shape L arises, as in the cases showed
here. Certainly, E cannot provide a general way to measure the quality of the results, since e.g. in
case of one steady-state cluster positioned exactly on a point of L, we would have E = 0 providing
absurdly the optimal choice.

In the following, all the results are given for an initial set of n = 5000 particles and a large
enough final time to reach a steady–state T = 50. Moreover, we use the Euclidean norm and
all particles are initialized with a constant static feature. For an extension of this application to
clustering also with respect to the static feature see Remark 4.1 below.

In Table 1 and Table 2 we show a sensitivity study of the error E as function of the percentage
of noise α and of the bounded confidence value ε1, for initial noisy data uniformly and normally
distributed, respectively. The number of clusters at equilibrium is also provided. Results with
minimal error value are highlighted with bold font. In particular, we point out as the increasing
percentage of noise highly affects the results.

In Figure 4.8 and Figure 4.9 some of this cases are shown. Precisely, for the uniformly dis-
tributed initial noisy data, Figure 4.8, we consider the largest value of the percentage of noise
α = 10% and three values of the bounded confidence level ε1: the smallest ε1 = 0.06 in Table 1,
the optimal ε1 = 0.08 (giving the smallest value of the error E) and the largest one ε1 = 0.1. We
observe that the result is highly influenced by the choice of the confidence bound which determines
the number of final clusters. Smaller and larger values of ε1 result in larger values of the error
measure E . In fact, in one case the model provides too many clusters which are very spread out,
with several outliers. In the other case too few clusters so that all the information on the exact

15



0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=0.060

exact shape
clusters

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=0.080

exact shape
clusters

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=0.100

exact shape
clusters

Figure 4.8: Shape detection of the letter “A” initialized with 10% of a uniform additive noise. Top left
panel shows the initial condition. We show clusters obtained with bounded confidence values
ε1 = 0.06 (top right), ε1 = 0.08 (bottom left) and ε1 = 0.1 (bottom right).

shape is lost. For the optimal value of ε1 = the model provides a good agreement with the exact
pattern.

Similar considerations hold for Figure 4.9 where we show the noisy initial data obtained with
α = 10% percentage of noise and three values of the bounded confidence level ε1 = 0.05, ε1 = 0.0675
(giving the smallest value of the error E) and ε1 = 0.08.

We point out that the goal of this application is to provide a preliminary step for shape feature
extraction. This technique should be coupled with a further algorithm which is able to select the
correct letter from a given alphabet. The dimensionality reduction provided by the data clustering
approach allows to efficiently employ the subsequent recognition analysis.

Remark 4.1 (Shape detection with non–constant static feature). In the previous examples the
static features is taken constant for all the data. In the non–constant case, one could think of this
feature as an additional initial given input which measures the quality of the information of each
single point and that can be modeled by the distance to its exact value in L.

4.3 Color image segmentation

We now turn to the second application of the data clustering model 3.3 which is the segmentation
of gray scale images. Image segmentation is widely used in medical and astronomical image
processing, face recognition, etc. In fact, this technique allows to partition an image in sets of
significant regions of pixels sharing same characteristics such as closeness and similar intensity of
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Figure 4.9: Shape detection of the letter “A” initialized with 5.5% of a Gaussian additive noise. Top
left panel shows the initial condition. We show clusters obtained with bounded confidence
values ε1 = 0.05 (top right), ε1 = 0.0675 (bottom left) and ε1 = 0.08 (bottom right)..

color. As in shape detection, the aim of such approach is to modify the description of an image
into a structure which easier to be analyzed for subsequent computer vision algorithms.

Several mathematical techniques have been applied to image segmentation. For instance we
mention level set methods [39,43] methods based on the Kuramoto model [29,37] and supervised
convolution neural networks [17,46]. A more complicated procedure to segmentation of images is
the clustering approach and we refer e.g. to the k–means method [44, 47], c–means method [33]
and hierarchical clustering method [45].

Here, we study the efficiency of the kinetic model (3.3) to solve image segmentation problems
and therefore we still relies on the clustering technique. Thanks to the model introduced in this
paper, segmentation can be performed by using two levels of clustering in order to determine
regions of pixels with similar characteristics. More precisely, we cluster based on the Euclidean
distance and the distance of the gray intensity between pixels. Taking into account spatial coor-
dinates is needed in order to avoid the problem of selecting homogeneous regions of pixels which
are however distinct in the original image. The clustering with respect the intensity of the gray
colors is performed by using the static feature variable c.

The application of (3.3) works as described in the following. Number of pixels is the number of
particles which are assumed to be equally spaced samples. The intensity of the gray color of each
pixel is computed at initial time and defines the one–dimensional static feature c of each particle.
The Mean Field Interaction Algorithm 1 is then applied to find clusters representing local regions
of the original image with homogeneous intensity of color. At equilibrium, we compute the mean
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Figure 4.10: Left panel: initial image of 4096 pixels with four regions with different gray intensity.
Middle panel: red dots show the positions of the clusters at equilibrium. Right panel:
segmentation of the initial image in two regions.
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(c) Segmentation:
ε1 = 0.2, ε2 = 0.1

Figure 4.11: Image segmentation of 174× 73 gray scale image taken by the data–set [6].

of the color intensity of pixels belonging to the same cluster and then they are mapped back to the
original positions in the initial image to get the segmentation. Another possible approach, which
is more suitable for images with very sharp color intensities, such as in astronomical images, is
to apply thresholding technique. This method is based on replacing the color intensity of each
cluster by black if the mean is below a certain threshold or by white otherwise. This technique
results therefore in binary images.

In Figure 4.10 we first apply the segmentation to a benchmark test in order to show how
the model works on a simple test. We initialize an gray scale image with 4096 pixels with four
regions of different intensity colors. The top and the bottom left corners have intensity 1 and 0.75,
respectively. The top and the bottom right corners have intensity 0 and 0.25, respectively. See the
left panel of Figure 4.10. The positions of the pixels are rescaled on Ω = [0, 1]2. The clustering
algorithm is applied with the two bounded confidence values ε1 = 0.5 and ε2 = 0.3. At equilibrium
the two red clusters showed in the middle panel of Figure 4.10 are computed by the kinetic model.
The mean of the intensity colors of the pixels in each cluster is computed and mapped back to
the initial position obtaining the segmentation in the right panel of Figure 4.10. The two values
of the gray intensity are 0.125 and 0.875.

We now apply the segmentation process to real images taken from different data–sets. In
Figure 4.11 we consider an image of 174× 73 pixels showing a night sky, trees and the moon. On
this example, the method is able to provide good results with a wide range of confidence values
since the variation of the gray scale is sharp between the objects which are also characterized by
regions having homogeneous colors. In Figure 4.11 we report the result obtained with ε1 = 0.2
and ε2 = 0.1 which results in the formation of 5 clusters.

The second image in Figure 4.12 is also characterized by two backgrounds: the sky which is
very homogeneous and the field which is less homogeneous. The goal of the segmentation process
would be to identify the two cows, separating them from the background. We report the results
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Figure 4.12: Image segmentation of 93× 93 gray scale image taken by the data–set [24].
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Figure 4.13: Image segmentation of 128× 94 gray scale image taken by the data–set [32].

obtained with ε1 = 0.2 and ε2 = 0.05, resulting in 6 clusters. Observe that ε2 is taken small in
order to avoid the formation of many clusters due to the low homogeneity of the field. The two
cows are well identified by the method.

In the case of Figure 4.13 the confidence level ε2 is taken larger in order to force clustering of
regions with snow but different shadows. The clustering method identifies 8 clusters and the skier
is well separated by the background.

In Figure 4.14 we employ the kinetic model for clustering to segmentation of a real image taken
by [32]. The true image is 67×67 pixels and several values of the bounded confidence levels ε1 and
ε2 are applied in order to cluster with respect positions and intensity color of pixels. The best result
is obtained with ε1 = 0.3 and ε2 = 0.1 which results in the formation of 8 clusters. Lower values
of ε1 allows to obtain more clusters and thus more gray intensity colors at equilibrium. Increasing
ε1 requires to not take ε2 also large, otherwise many information are lost at equilibrium.

Finally, in Figure 4.15 we present an additional experiment aimed to provide a comparison
between our segmentation process and the one published in [29] based on the Kuramoto model.
The image is selected from the data–set [32]. Right panel of Figure 4.15 has to be compared with
Figure (7c) in [29] and, in particular, we observe that our result is able to detect better some
structures of the image that are lost by using the Kuramoto model.

5 Conclusions

In this paper we have proposed a new method for clustering of large data which is based on a suit-
able generalization of the Hegselmann-Krause opinion dynamics model. The extension accounts
for clustering with respect to two different sets of features of each single datum: one set describes
time dependent characteristics, the other one represents static characteristics.

The mean–field limit of the particle model has been formally derived and the resulting kinetic
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Figure 4.14: Image segmentation of 67× 67 gray scale image taken by the data–set [32].
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ε1 = 0.05, ε2 = 0.10

Figure 4.15: Image segmentation of 132× 106 gray scale image taken by the data–set [32].

equation allows for the study of mathematical properties. Time evolution of moments and asymp-
totic behavior of kinetic equation have been analytically characterized. Moreover, the derivation
of the mean–field model allows for reduction of computational complexity thanks to a suitable
random subset Monte Carlo algorithm.

Several applications to digital imaging have been proposed. In particular, we have focused on
application to shape detection and image segmentation, showing the efficiency of the model to
provide satisfying results. Finally, we emphasize that the present model has to be intended as
a starting point towards more realistic applications, for example based on the use of non static
features combined with suitable machine learning approaches.
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