Let C⊂ P2 be a reduced, singular curve of degree d and equation f= 0. Let Σ denote the jacobian subscheme of C. We have 0 → E→ 3. O→ IΣ(d- 1) → 0 (the surjection is given by the partials of f). We study the relationships between the Betti numbers of the module H∗0(E) and the integers, d, τ, where τ= deg (Σ). We observe that our results apply to any quasi-complete intersection of type (s, s, s).
Quasi-complete intersections in P2 and syzygies
Ellia P.
2020
Abstract
Let C⊂ P2 be a reduced, singular curve of degree d and equation f= 0. Let Σ denote the jacobian subscheme of C. We have 0 → E→ 3. O→ IΣ(d- 1) → 0 (the surjection is given by the partials of f). We study the relationships between the Betti numbers of the module H∗0(E) and the integers, d, τ, where τ= deg (Σ). We observe that our results apply to any quasi-complete intersection of type (s, s, s).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ellia-QciAndSyz.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
464.14 kB
Formato
Adobe PDF
|
464.14 kB | Adobe PDF | Visualizza/Apri |
Ellia2020_Article_Quasi-completeIntersectionsInM.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
301.78 kB
Formato
Adobe PDF
|
301.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.