Let C⊂ P2 be a reduced, singular curve of degree d and equation f= 0. Let Σ denote the jacobian subscheme of C. We have 0 → E→ 3. O→ IΣ(d- 1) → 0 (the surjection is given by the partials of f). We study the relationships between the Betti numbers of the module H∗0(E) and the integers, d, τ, where τ= deg (Σ). We observe that our results apply to any quasi-complete intersection of type (s, s, s).

Quasi-complete intersections in P2 and syzygies

Ellia P.
2020

Abstract

Let C⊂ P2 be a reduced, singular curve of degree d and equation f= 0. Let Σ denote the jacobian subscheme of C. We have 0 → E→ 3. O→ IΣ(d- 1) → 0 (the surjection is given by the partials of f). We study the relationships between the Betti numbers of the module H∗0(E) and the integers, d, τ, where τ= deg (Σ). We observe that our results apply to any quasi-complete intersection of type (s, s, s).
2020
Ellia, P.
File in questo prodotto:
File Dimensione Formato  
Ellia-QciAndSyz.pdf

accesso aperto

Tipologia: Pre-print
Licenza: Creative commons
Dimensione 464.14 kB
Formato Adobe PDF
464.14 kB Adobe PDF Visualizza/Apri
Ellia2020_Article_Quasi-completeIntersectionsInM.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 301.78 kB
Formato Adobe PDF
301.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2416339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact