QUASI-COMPLETE INTERSECTIONS IN \mathbb{P}^{2} AND SYZYGIES.

PH. ELLIA

Abstract

Let $C \subset \mathbb{P}^{2}$ be a reduced, singular curve of degree d and equation $f=0$. Let Σ denote the jacobian subscheme of C. We have $0 \rightarrow E \rightarrow 3 . \mathcal{O} \rightarrow \mathcal{I}_{\Sigma}(d-1) \rightarrow 0$ (the surjection is given by the partials of f). We study the relationships between the Betti numbers of the module $H_{*}^{0}(E)$ and the integers, d, τ, where $\tau=\operatorname{deg}(\Sigma)$. We observe that our results apply to any quasi-complete intersection of type (s, s, s).

1. Introduction.

Let $C \subset \mathbb{P}^{2}$ be a reduced, singular curve, of degree d, of equation $f=0$. The partials of f determine a morphism: $3 . \mathcal{O} \xrightarrow{\partial f} \mathcal{O}(d-1)$, whose image is $\mathcal{I}_{\Sigma}(d-1)$, where according to our assumptions, $\Sigma \subset \mathbb{P}^{2}$, is a closed subscheme of codimension two. The subscheme Σ, whose support is the singular locus of C, is called the jacobian subscheme of C. We denote by τ its degree, it is the global Tjurina number of the plane curve C.

We have:

$$
\begin{equation*}
0 \rightarrow E \rightarrow 3 . \mathcal{O} \rightarrow \mathcal{I}_{\Sigma}(d-1) \rightarrow 0 \tag{1}
\end{equation*}
$$

where E is a rank two vector bundle with Chern classes $c_{1}=1-d, c_{2}=(d-1)^{2}-\tau$ (see for instance [11] and references therein). The bundle E is the sheaf of logarithmic vector fields along C, also denoted $\operatorname{Der}(-\log C)$. ([14], [15], [5]). A particular case of this situation is when C is an arrangement of lines ([8], [17]). This is a very active field of research with a huge literature.

In ([9]), using techniques of the theory of singularities, du Plessis and Wall gave sharp bounds on τ in function of d and d_{1}, the least twist of E having a section. Observe that $H_{*}^{0}(E)$ is the module of syzygies between the partials. This result has been extended (see [11]) to the case of quasi-complete intersections (q.c.i.), using vector bundles techniques.

In this note, inspired by [6], instead of considering only d_{1}, the minimal degree of a generator of $H_{*}^{0}(E)$, we consider the full minimal resolution of this module. So we will assume that $H_{*}^{0}(E)$ is minimally generated by m elements of degree $d_{1} \leq d_{2} \leq \cdots \leq d_{m}$. The m-uple $\left(d_{1}, \cdots, d_{m}\right)$ is the exponent of C. We have $m \geq 2$, with equality if and only if E splits. In this case one say that C is a free divisor ([14], [1]) or, equivalently, that Σ is an almost complete intersection. The case $m=3$ is handled in [6]. Here we deal with the general case $m \geq 3$.

[^0]Starting from the minimal free resolution of $H_{*}^{0}(E)$ we show how to get a free (non necessarily minimal) resolution of \mathcal{I}_{Σ}. With this we show (Corollary 6) that if Σ is a complete intersection, then $m \leq 4$. Then (Theorem 8) we prove that $2 d-4 \geq d_{i}, \forall i$ and that the inequality is sharp if and only if Σ is a point $(\tau=1)$. Finally we prove: $d_{m}=d-1$ or $2 d-m \geq d_{m}$.

Then Theorem 13), shows that $d_{3} \leq d-1$ and characterizes the q.c.i. realizing the lower bound, $(d-1)\left(d-1-d_{1}\right)=\tau$, in du Plessis-Wall theorem: this happens if and only if Σ is a complete intersection $\left(d-1, d-1-d_{1}\right)$. We also describe what happens in the next degree.

Finally, in the setting of q.c.i., we answer to a conjecture raised in [7] (Proposition 15) and describe the sub-maximal case (see Proposition 17).

The exact sequence (1) presents Σ as a quasi-complete intersections (q.c.i.) of type $(d-1, d-1, d-1)$. In our proofs we will never use the fact that the three curves giving the q.c.i. are the partials of a polynomial $f(!)$. So setting $s=d-1$, all our results are true for q.c.i. of type (s, s, s). Actually, after appropriate changes in notations (see [11]) they should hold for all q.c.i. (i.e. of any type (a, b, c)). Observe that to determine the minimal free resolution (m.f.r.) of $H_{*}^{0}(E)$ amounts to determine the m.f.r. of the (non saturated if $m>2)$ q.c.i. ideal $J=\left(F_{1}, F_{2}, F_{3}\right)$. For a purely algebraic approach to q.c.i. see for example [16].

As the first version of this paper was finished I received the preprint [7] containing some overlaps. This obliged me to revisit my text. This version contains some improvements (so thank you to the authors of [7] !), but overlaps are still present. However, since the methods are different, it could be useful to see how geometric techniques apply in this context.

I thank Alexandru Dimca for useful discussions, in particular about (i) of Theorem 13.

2. SEtTing, Notations.

Following [6] we have:
Definition 1. We will say that C is a m-syzygy curve if $H_{*}^{0}(E)$ is minimally generated by m elements of degree $d_{1} \leq d_{2} \leq \cdots \leq d_{m}$. The m-uple $\left(d_{1}, \cdots, d_{m}\right)$ is the exponent of C.

Remark 2. We have $m \geq 2$. Moreover $m=2$ if and only if E is the direct sum of two line bundles.

In the sequel we will always assume $m \geq 3$.
For any $i, E\left(d_{i}\right)$ has a section vanishing in codimension two.

Besides the exact sequence (1) we will also consider the following ones:

$$
\begin{equation*}
0 \rightarrow \bigoplus_{j=1}^{m-2} \mathcal{O}\left(-b_{j}\right) \rightarrow \bigoplus_{i=1}^{m} \mathcal{O}\left(-d_{i}\right) \rightarrow E \rightarrow 0 \tag{2}
\end{equation*}
$$

The minimal presentation of $H_{*}^{0}(E)$ yields $\bigoplus_{i=1}^{m} \mathcal{O}\left(-d_{i}\right) \rightarrow E \rightarrow 0$, the kernel; K, is locally free of rank $m-2$ with $H_{*}^{1}(K)=0$, hence K is a direct sum of line bundles.

$$
\begin{equation*}
0 \rightarrow \mathcal{O} \rightarrow E\left(d_{1}\right) \rightarrow \mathcal{I}_{Z}\left(2 d_{1}+1-d\right) \rightarrow 0 \tag{3}
\end{equation*}
$$

Here $Z \subset \mathbb{P}^{2}$ is a locally complete intersection (1.c.i.), zero-dimensional subscheme of degree

$$
\begin{equation*}
\operatorname{deg}(Z)=c_{2}\left(E\left(d_{1}\right)\right)=d_{1}(1-d)+(d-1)^{2}-\tau+d_{1}^{2} \tag{4}
\end{equation*}
$$

3. Resolutions.

Starting from (2) we can get the minimal free resolution of $H_{*}^{1}(E)$ and $H_{*}^{0}\left(\mathcal{I}_{Z}\right)$, more precisely:

Lemma 3. Let E be a rank two vector bundle on \mathbb{P}^{2} and let $Z=(s)_{0}, s \in H^{0}\left(E\left(d_{1}\right)\right)$, where $d_{1}=\min \left\{k \mid h^{0}(E(k)) \neq 0\right\}$.
i) The following are equivalent:
a) $H_{*}^{0}(E)$ is minimally generated by m elements
b) $H_{*}^{1}(E)$ is minimally generated by $m-2$ elements
c) $H^{0}\left(\mathcal{I}_{Z}\right)$ is minimally generated by $m-1$ elements.

Assume the minimal free resolution of $H_{*}^{0}(E)$ is given by (2) and that $c_{1}(E)=1-d$, then:
ii) The minimal free resolution of $H_{*}^{1}(E)$ is
(5) $0 \rightarrow \bigoplus_{j=1}^{m-2} S\left(-b_{j}\right) \rightarrow \bigoplus_{i=1}^{m} S\left(-d_{i}\right) \rightarrow \bigoplus_{i=1}^{m} S\left(d_{i}+1-d\right) \rightarrow \bigoplus_{j=1}^{m-2} S\left(b_{j}+1-d\right) \rightarrow H_{*}^{1}(E) \rightarrow 0$
(iii) The minimal free resolution of $H_{*}^{0}\left(\mathcal{I}_{Z}\right)$ is:

$$
\begin{equation*}
0 \rightarrow \bigoplus_{j=1}^{m-2} \mathcal{O}\left(-b_{j}+d-1-d_{1}\right) \rightarrow \bigoplus_{i=2}^{m} \mathcal{O}\left(-d_{i}+d-1-d_{1}\right) \rightarrow \mathcal{I}_{Z} \rightarrow 0 \tag{6}
\end{equation*}
$$

Proof. Let E be a rank two vector bundle on \mathbb{P}^{2} and assume that $H_{*}^{0}(E)$ is minimally generated by m elements. We have $\mathcal{G}_{1} \rightarrow E \rightarrow 0$, with $\mathcal{G}_{1}=\bigoplus_{1}^{m} \mathcal{O}\left(-d_{i}\right)$. As explained before the kernel, \mathcal{G}_{2}, is a direct sum of line bundles: $\mathcal{G}_{2}=\bigoplus \mathcal{O}\left(-b_{j}\right)$. By dualizing the exact sequence: $0 \rightarrow \mathcal{G}_{2} \rightarrow \mathcal{G}_{1} \rightarrow E \rightarrow 0$, we get: $0 \rightarrow E^{*} \rightarrow \mathcal{G}_{1}^{*} \rightarrow \mathcal{G}_{2}^{*} \rightarrow 0$. Taking into account that $E^{*} \simeq E\left(-c_{1}\right)\left(c_{1}=c_{1}(E)\right)$ because E has rank two, we get: $0 \rightarrow E \rightarrow \mathcal{G}_{1}^{*}\left(c_{1}\right) \rightarrow$ $\mathcal{G}_{2}^{*}\left(c_{1}\right) \rightarrow 0$. Taking cohomology this yields: $0 \rightarrow H_{*}^{0}(E) \rightarrow G_{1}^{*}\left(c_{1}\right) \rightarrow G_{2}^{*}\left(c_{1}\right) \rightarrow H_{*}^{1}(E) \rightarrow 0$. This is the beginning of a minimal free resolution of $H_{*}^{1}(E)$. We conclude with (2). This proves (ii) and also a) \Rightarrow b) in (i). By uniqueness of the minimal free resolution this also proves b) $\Rightarrow \mathrm{a}$) in (i).

We have:
which proves (iii) and also a) \Leftrightarrow c) in (i) (observe that we have $0 \rightarrow S \xrightarrow{f} H_{*}^{0}\left(E\left(d_{1}\right)\right) \rightarrow$ $H_{*}^{0}\left(\mathcal{I}_{Z}\left(2 d_{1}-d+1\right)\right) \rightarrow 0$, where, by assumption, the image of f yields a minimal generator of $H_{*}^{0}\left(E\left(d_{1}\right)\right)$.

4. Resolution of $H_{*}^{0}\left(\mathcal{I}_{\Sigma}\right)$.

Starting from the resolution of $H_{*}^{0}(E)$ it is also possible to get a resolution of $H_{*}^{0}\left(\mathcal{I}_{\Sigma}\right)$ but this resolution is not necessarily minimal:

Proposition 4. We have the following free resolution

$$
\begin{equation*}
0 \rightarrow \bigoplus_{i=1}^{m} \mathcal{O}\left(d_{i}-2 d+2\right) \rightarrow \bigoplus_{j=1}^{m-2} \mathcal{O}\left(b_{j}-2 d+2\right) \oplus 3 . \mathcal{O}(1-d) \rightarrow \mathcal{I}_{\Sigma} \rightarrow 0 \tag{7}
\end{equation*}
$$

This resolution is minimal up to cancellation of $\mathcal{O}(1-d)$ terms with some $\mathcal{O}\left(d_{i}-2 d+2\right)$ (in this case $d_{i}=d-1$).

Proof. Since $\mathcal{I}_{\Sigma}(d-1)$ is generated by global sections we can link Σ to a zero-dimensional subscheme T by a complete intersection of type $(d-1, d-1)$. From the exact sequence (1), by mapping cone, we get that T is a section of $E(d-1)$. So we have an exact sequence: $0 \rightarrow \mathcal{O}(1-d) \rightarrow E \rightarrow \mathcal{I}_{T} \rightarrow 0$. From (2) we get a surjection: $\bigoplus_{1}^{m} \mathcal{O}\left(-d_{i}\right) \rightarrow \mathcal{I}_{T} \rightarrow 0$. Using (2) we can build a commutative diagram and by the snake lemma we get:

$$
0 \rightarrow \bigoplus_{1}^{m-2} \mathcal{O}\left(-b_{j}\right) \oplus \mathcal{O}(1-d) \rightarrow \bigoplus_{1}^{m} \mathcal{O}\left(-d_{i}\right) \rightarrow \mathcal{I}_{T} \rightarrow 0
$$

This resolution is minimal unless the section of $E(d-1)$ yielding T is a minimal generator of $H_{*}^{0}(E)$. From the above resolution, by mapping cone, we get the desired resolution of \mathcal{I}_{Σ}. Again this resolution is minimal unless one curve (resp. both curves) of the complete intersection $(d-1, d-1)$ linking T to Σ is a minimal generator (resp. both curves are minimal generators) of \mathcal{I}_{T}.

On the other hand, by minimality of the resolution (2) no term $\mathcal{O}\left(b_{j}-2 d+2\right)$ can cancel.

Remark 5. Cancellations can occur. Let $C=X \cup L$, where X is a smooth curve of degree $d-1, d \geq 3$, and where L is a line intersecting X transversally. Clearly Σ is a set of $d-1$ points on the line L. The minimal free resolution of \mathcal{I}_{Σ} is: $0 \rightarrow \mathcal{O}(-d) \rightarrow$ $\mathcal{O}(-1) \oplus \mathcal{O}(1-d) \rightarrow \mathcal{I}_{\Sigma} \rightarrow 0$. Comparing with (4) we see that $m=3$ and that two terms $\mathcal{O}(1-d)$ did cancel. So we have $d_{1}=d-2, d_{2}=d_{3}=d-1$.

See Remark 9 for another example.
Corollary 6. If $m \geq 5, \Sigma$ can't be a complete intersection.
Proof. Indeed Σ is a complete intersection if and only if the minimal free resolution of \mathcal{I}_{Σ} starts with two generators. According to Proposition 4 we have certainly $m-2$ minimal generators of degrees $2 d-2-b_{j}$ in the minimal free resolution of \mathcal{I}_{Σ}.

Before to go on we recall a basic fact about zero-dimensional subscheme of \mathbb{P}^{2} :
Lemma 7. Let $X \subset \mathbb{P}^{2}$ be a zero-dimensional subscheme with minimal free resolution:

$$
\begin{equation*}
0 \rightarrow \bigoplus_{1}^{t} \mathcal{O}\left(-b_{j}\right) \xrightarrow{M} \bigoplus_{1}^{t+1} \mathcal{O}\left(-a_{i}\right) \rightarrow \mathcal{I}_{X} \rightarrow 0 \tag{8}
\end{equation*}
$$

Then $a_{i} \geq t, \forall i$.
In particular if $h^{0}\left(\mathcal{I}_{X}(n)\right) \neq 0$, then $H_{*}^{0}\left(\mathcal{I}_{X}\right)$ can be generated by $n+1$ elements.

Proof. This should be well known (see for example [10], Corollary 3.9), but for the convenience of the reader we give a proof. We work by induction on t. The case $t=1$ is clear. Assume the statement for $t-1$. Let $a_{1} \leq \cdots \leq a_{t+1}$. Since $\mathcal{I}_{X}\left(a_{t+1}\right)$ is generated by global sections we can always perform a liaison of type $\left(a_{1}, a_{t+1}\right)$. By mapping-cone the linked scheme, T, has the following resolution:

$$
0 \rightarrow \bigoplus_{2}^{t} \mathcal{O}\left(a_{i}-a_{1}-a_{t+1}\right) \rightarrow \bigoplus_{1}^{t} \mathcal{O}\left(b_{j}-a_{1}-a_{t+1}\right) \rightarrow \mathcal{I}_{T} \rightarrow 0
$$

This resolution is minimal and by the inductive assumption we get: $a_{1}+a_{t+1}-b_{j} \geq t-1$, hence $a_{1} \geq b_{j}-a_{t+1}+t-1$. We have $b_{j}-a_{t+1} \geq 0, \forall j$ (they are the degrees of the elements of the last row of the matrix M). If $b_{j}-a_{t+1}=0, \forall j$, then, by minimality, the last row of M is zero. By the Hilbert-Buch Theorem (see [10], Theorem 3.2) the maximal minors of M yield a minimal set of generators of the ideal $I(X):=H_{*}^{0}\left(\mathcal{I}_{X}\right)$. If M has a row of zeroes, we get only one non-zero generator, this is impossible. It follows that $a_{1} \geq t$.

Theorem 8. (i) With notations as in Section 2, if $d \geq 3$, then $2 d-4 \geq d_{i}, \forall i$.
(ii) Moreover, if $d>3$, we have equality (i.e. $d_{m}=2 d-4$) if and only if $\tau=1$.
(iii) We have $d_{m}=d-1$ (hence $d_{i} \leq d-1, \forall i$) or $d_{i} \leq 2 d-m$, $\forall i$.

Proof. (i) This is clear if $d_{i}=d-1$, so we may assume that the term $\mathcal{O}\left(d_{i}-2 d+2\right)$ really appears in (7) even after possible cancellations. This implies $2 d-2-d_{i} \geq 2$.
(ii) We have $\min \left\{2 d-d_{i}-2\right\}=2 d-d_{m}-2$. Assume $2 d-d_{m}-2=2$. For $d>3$, the term $\mathcal{O}\left(d_{m}-2 d+2\right) \simeq \mathcal{O}(-2)$ really appears in the minimal free resolution of \mathcal{I}_{Σ}. This implies that there are two generators of degree one, hence Σ is a point.

Conversely if Σ is a point, let T be linked to Σ by a complete intersection $(d-1, d-1)$. Then using the minimal free resolution of \mathcal{I}_{Σ}, by mapping-cone, we have: $0 \rightarrow 2 . \mathcal{O}(-2 d+$ $3) \rightarrow 2 . \mathcal{O}(1-d) \oplus \mathcal{O}(-2 d+4) \rightarrow \mathcal{I}_{T} \rightarrow 0$. But using instead the resolution (1) we see that T is a section of $E(d-1)$, so we have $0 \rightarrow \mathcal{O}(1-d) \rightarrow E \rightarrow \mathcal{I}_{T} \rightarrow 0$. Using the above resolution of \mathcal{I}_{T}, we get after some diagram-chasing: $0 \rightarrow 2 . \mathcal{O}(-2 d+3) \rightarrow 3 . \mathcal{O}(1-d) \oplus \mathcal{O}(-2 d+4) \rightarrow$ $E \rightarrow 0$. This resolution is clearly minimal. It follows that $m=4$ and $d_{m}=2 d-4$.
(iii) Assume $d_{m} \neq d-1$, then, according to Proposition 4, the term $\mathcal{O}\left(d_{m}-2 d+2\right)$ appears in the minimal free resolution of \mathcal{I}_{Σ}. Let $2 d-4-u=d_{m}$. We have $u \geq 0$ by (i). Since there is a relation of degree $u+2$, there are at least two minimal generators of degree $\leq u+1$ in the minimal free resolution of \mathcal{I}_{Σ}. So $h^{0}\left(\mathcal{I}_{\Sigma}(u+1)\right) \neq 0$ and \mathcal{I}_{Σ} can be generated by $u+2$ elements (Lemma 7). This implies (see 7) that $m-3 \leq u+1$, hence $d_{m} \leq 2 d-m$.

Remark 9. (i) Point (i) was known by different methods (see [7], [4]).
(ii)The proof of (iii) above shows the following: if $d \neq 4$ and if $d_{m}=2 d-5$, then $\tau \leq 4$ or $h^{0}\left(\mathcal{I}_{\Sigma}(1)\right)=0$ but Σ contains a subscheme of length $\tau-1$ lying on a line.
(iii) If $\Sigma=\{p\}$, then for any $d \geq 3$ we can present Σ as a q.c.i. of type $(d-1, d-1, d-1)$ and, clearly, the term $3 . \mathcal{O}(1-d)$ will cancel in (7).

Example 10. We can have $m=4$ and Σ a complete intersection, so the bound of Corollary 6 is sharp.

From the point of view of the jacobian ideal to get a curve C with $\tau=1$ we may argue as follows. Let \mathbb{P} denote the blowing-up of \mathbb{P}^{2} at a point. We have $\mathbb{P}=\mathbb{F}_{1}:=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ (see for ex. [2]). Denote by h, f the classes of $\mathcal{O}_{\mathbb{F}_{1}}(1)$ and of a fiber in Pic $\left(\mathbb{F}_{1}\right)$. We have $h^{2}=1=h f, f^{2}=0$. The exceptional divisor is $E=h-f$. For any $a \geq 1$, the linear system $|a h+2 f|$ contains a smooth irreducible curve, C^{\prime}, such that $C^{\prime} . E=2$. The image of C^{\prime} in \mathbb{P}^{2} is a curve, C, of degree $a+2$ with $\tau(C)=1$ (for $a=1 C$ is a nodal cubic).

Other examples with $m=4$ and Σ complete intersection can be obtained by taking $C=A \cup B$ where A, B are smooth curves, of degrees a, b, intersecting transversally. We have $d=a+b, \tau=a b$ and Σ is a complete intersection (a, b). Assume $a \geq 2$ then, arguing as above, we get $d_{1}=d-2, d_{2}=d_{3}=d_{4}=d-1, b_{1}=d+a-2, b_{2}=d+b-2$ and the corresponding resolution of $H_{*}^{0}(E)$ is minimal.

Another consequence of Lemma 7:

Corollary 11. With notations as in Section 2 (in particular $m \geq 3$, see Remark 2) we have:
(i) $d_{1}+d_{i} \geq d+m-3, \forall i \geq 2$
(ii) Z is a complete intersection if and only if $m=3$. In that case Z is a complete intersection of type $\left(d_{1}+d_{2}-d+1, d_{1}+d_{3}-d+1\right)$.

Proof. (i) This follows from (6) and Lemma 7.
(ii) Follows from (iii) of Lemma 3.

Remark 12. Part (i) is proved also in [7] and (ii) is Prop. 3.1. of [6]. The proofs are different.

If $m=3$ and $d_{1}+d_{2}=d$, following [6] one says that C is a plus one generated curve. We see that C is a plus one generated curve if and only if Z (of degree $d_{3}-d_{2}+1$) is contained in a line. We recover the fact that C is nearly free (i.e. Z is a point) if, moreover, $d_{3}=d_{2}$.

5. Around the extremal cases in du Plessis-Wall's theorem.

We recall the bound given by du Plessis-Wall ([9], see [11] for a different proof, valid also for q.c.i. $):(d-1)\left(d-1-d_{1}\right) \leq \tau \leq(d-1)\left(d-1-d_{1}\right)+d_{1}^{2}$.

Theorem 13. With notations as in Section 2 (in particular $m \geq 3$).
(i) We have $d_{1} \leq d_{2} \leq d_{3} \leq d-1$.
(ii) We have $d+1 \geq m$.
(iii) We have $(d-1)\left(d-1-d_{1}\right)=\tau$ if and only if Σ is a complete intersection of type $\left(d-1, d-1-d_{1}\right)$. In this case $m=3$ and $d_{2}=d_{3}=d-1$.
(iv) Assume $\tau=(d-1)\left(d-1-d_{1}\right)+1$. If $\tau>1$, then $m=4$ and $\left\{d_{i}\right\}=\left\{d_{1}, d-1, d-\right.$ $\left.1, d-3+d_{1}\right\}$ or $d_{1}=1, m=2$ and E splits like $\mathcal{O}(-1) \oplus \mathcal{O}(d-2)$.

Proof. (i) Let us denote by g_{1}, g_{2}, g_{3} the generators of degrees d_{1}, d_{2}, d_{3} of $H_{*}^{0}(E)$. We will consider the g_{i} 's as relations among the partials.

Consider the Koszul relations: $K_{z}=\left(f_{y},-f_{x}, 0\right), K_{y}=\left(f_{z}, 0,-f_{x}\right), K_{x}=\left(0, f_{z},-f_{y}\right)$. We have:

$$
\begin{equation*}
f_{z} K_{z}-f_{y} K_{y}+f_{x} K_{x}=0 \tag{9}
\end{equation*}
$$

The relations K_{x}, K_{y}, K_{z} correspond to sections s_{x}, s_{y}, s_{z} of $E(d-1)$. It follows that $d_{1} \leq$ $d-1$. We also clearly have $d_{2} \leq d-1$. Indeed otherwise K_{x}, K_{y}, K_{z} are multiple of $g_{1}=\left(u_{1}, v_{1}, w_{1}\right)$, which is impossible $\left(P\left(u_{1}, v_{1}, w_{1}\right)=\left(f_{y},-f_{x}, 0\right)\right.$ implies $w_{1}=0$ and going on this way we get $g_{1}=0$). If $d_{3} \geq d$, these sections are combinations of g_{1}, g_{2} only. Now (9) yields a relation involving only g_{1} and g_{2}. We claim that this relation is non trivial.

Indeed let $s_{x}=a g_{1}+b g_{2}, s_{y}=a^{\prime} g_{1}+b^{\prime} g_{2}, s_{z}=a^{\prime \prime} g_{1}+b^{\prime \prime} g_{2}$. Then (9) becomes: $g_{1}\left(a f_{x}-a^{\prime} f_{y}+a^{\prime \prime} f_{z}\right)+g_{2}\left(b f_{x}-b^{\prime} f_{y}+b^{\prime \prime} f_{z}\right)=0$. Assume $a f_{x}-a^{\prime} f_{y}+a^{\prime \prime} f_{z}=0$ and $b f_{x}-b^{\prime} f_{y}+b^{\prime \prime} f_{z}=0$. Then $\alpha=\left(a,-a^{\prime}, a^{\prime \prime}\right)$ determines a section of $E\left(d-1-d_{1}\right)$ and $\beta=\left(b,-b^{\prime}, b^{\prime \prime}\right)$ a section of $E\left(d-1-d_{2}\right)$. Since $d-1-d_{2} \leq d_{1}-1$ (Corollary 11), we get $\beta=0$, hence $b=b^{\prime}=b^{\prime \prime}=0$. Since $d-1-d_{1} \leq d_{2}-1$ (Corollary 11), we see that α is a multiple of $g_{1}:\left(a,-a^{\prime}, a^{\prime \prime}\right)=P\left(u_{1}, v_{1}, w_{1}\right)$. It follows that $a=P u_{1}$. Moreover
$s_{x}=\left(0, f_{z},-f_{y}\right)=a g_{1}=\left(P u_{1}^{2}, P u_{1} v_{1}, P u_{1} w_{1}\right)$ and it follows that $P u_{1}=0=a$, hence $s_{x}=0$, which is impossible.

So we have a non trivial relation $A g_{1}=B g_{2}$. We may assume $(A, B)=1$ (otherwise just divide by the common factors). It follows that B divides every components u_{1}, v_{1}, w_{1} of g_{1} and we get a relation $\left(u_{1}^{\prime}, v_{1}^{\prime}, w_{1}^{\prime}\right)$ of degree $<d_{1}$, against the minimality of d_{1}. We conclude that $d_{3} \leq d-1$.
(ii) From (i) we have $2 d-2 \geq d_{1}+d_{3}$. We conclude with Corollary 11.
(iii) Assume $\tau=(d-1)\left(d-1-d_{1}\right)$. Since $\mathcal{I}_{\Sigma}(d-1)$ is generated by global sections we can link Σ to a subscheme Γ by a complete intersection $F \cap G$ of type $(d-1, d-1)$. Clearly $\operatorname{deg}(\Gamma)=(d-1)^{2}-\tau=d_{1}(d-1)$. By mapping cone we have (after simplifications): $0 \rightarrow \mathcal{O} \rightarrow E(d-1) \rightarrow \mathcal{I}_{\Gamma}(d-1) \rightarrow 0$. Twisting by $1-d+d_{1}$ we get: $0 \rightarrow \mathcal{O}(1-$ $\left.d+d_{1}\right) \rightarrow E\left(d_{1}\right) \rightarrow \mathcal{I}_{\Gamma}\left(d_{1}\right) \rightarrow 0$. Since $\tau>0, d_{1}<d-1$, hence $h^{0}\left(\mathcal{I}_{\Gamma}\left(d_{1}\right)\right) \neq 0$. It follows that Γ is contained in a complete intersection $\left(d_{1}, d-1\right)$. Indeed the base locus of the linear system of curves of degree $d-1$ containing Γ has dimension zero (consider $F \cap G)$ and $d_{1}<d-1$. For degree reasons Γ is a complete intersection $\left(d_{1}, d-1\right)$ and we have $0 \rightarrow \mathcal{O}\left(1-d-d_{1}\right) \rightarrow \mathcal{O}\left(-d_{1}\right) \oplus \mathcal{O}(1-d) \rightarrow \mathcal{I}_{\Gamma} \rightarrow 0$. By mapping cone again: $0 \rightarrow \mathcal{O}(1-d) \oplus \mathcal{O}\left(d_{1}-2 d+2\right) \rightarrow \mathcal{O}\left(d_{1}+1-d\right) \oplus 2 . \mathcal{O}(1-d) \rightarrow \mathcal{I}_{\Sigma} \rightarrow 0$. We claim that we can cancel the repeated term $\mathcal{O}(1-d)$. Indeed, since $\operatorname{dim}(F \cap G)=0$, we may assume that F or G is not a multiple of S, the curve of degree d_{1} containing Γ, hence F or G is a minimal generator of $H_{*}^{0}\left(\mathcal{I}_{\Gamma}\right)$. It follows that Σ is a complete intersection. We conclude with Proposition 4.

Conversely if Σ is a complete intersection $\left(d-1, d-1-d_{1}\right)$, from Proposition 4 we get $m=3$ and $d_{2}=d_{3}=d-1$.
(iv) We argue as above. The assumption $\tau>1$ makes sure that $h^{0}\left(\mathcal{I}_{\Gamma}\left(d_{1}\right)\right) \neq 0$. This time we find that Γ is linked to one point by a complete intersection $\left(d-1, d_{1}\right)$. By mapping cone we get: $0 \rightarrow 2 . \mathcal{O}\left(-d-d_{1}+2\right) \rightarrow \mathcal{O}\left(-d-d_{1}+3\right) \oplus \mathcal{O}\left(-d_{1}\right) \oplus \mathcal{O}(-d+1) \rightarrow \mathcal{I}_{\Gamma} \rightarrow 0$. This resolution is minimal except if $d_{1}=1$ in which case we have: $0 \rightarrow \mathcal{O}(1-d) \rightarrow$ $\mathcal{O}(2-d) \oplus \mathcal{O}(-1) \rightarrow \mathcal{I}_{\Gamma} \rightarrow 0$. As we have seen above $\Gamma=(s)_{0}$ where $s \in H^{0}(E(d-1))$. If s is a minimal generator of $H_{*}^{0}(E)$, then $H_{*}^{0}\left(\mathcal{I}_{Z}\right)$ has $m-1$ minimal generators, otherwise it has m minimal generators. So if $d_{1}>1,3 \leq m \leq 4$. By mapping cone we go back to Σ. If $d_{1}>1$ we get: $0 \rightarrow \mathcal{O}\left(-d+d_{1}-1\right) \oplus \mathcal{O}\left(-2 d+2+d_{1}\right) \rightarrow 2 . \mathcal{O}\left(-d+d_{1}\right) \oplus \mathcal{O}(1-d) \rightarrow \mathcal{I}_{\Sigma} \rightarrow 0$. From Proposition 4 we conclude that $m=4$ and $\left\{d_{i}\right\}=\left\{d_{1}, d-1, d-1, d-3+d_{1}\right\}$. If $d_{1}=1$, by mapping cone we get $0 \rightarrow \mathcal{O}(-2 d+3) \oplus \mathcal{O}(-d) \rightarrow 3 . \mathcal{O}(1-d) \rightarrow \mathcal{I}_{\Sigma} \rightarrow 0$. This resolution is minimal. Hence $m=2$ and E splits like $\mathcal{O}(-d+2) \oplus \mathcal{O}(-1)$.

Remark 14. See [6] for a different proof of part (i). Point (ii) is proved in [7].
Since the minimal free resolution of sets of points of low degree are known (see for example [12] for a list), the analysis above can be extended to the cases $\tau=(d-1)\left(d-1-d_{1}\right)+x$, for small x.

It is easy to show that if τ reaches the upper-bound in the first part of du Plessis-Wall's Theorem, then E splits (because $c_{2}\left(E\left(d_{1}\right)\right)=0$ and $\left.h^{0}\left(E\left(d_{1}\right)\right) \neq 0\right)$ i.e. Σ is an almost
complete intersection (or C is a free curve). However there is a second part in du PlessisWall's theorem: under the assumption $2 d_{1}+1>d$ (which amounts to say that E is stable), we have a better upper-bound: $\tau \leq \tau_{+}:=(d-1)\left(d-1-d_{1}\right)+d_{1}^{2}-\frac{1}{2}\left(2 d_{1}+1-d\right)\left(2 d_{1}+2-d\right)$. Notice that this holds true also for q.c.i. ([11]).

In [7] Thm. 3.1, the authors prove that this bound is reached if and only if we have:

$$
\begin{equation*}
0 \rightarrow(m-2) \cdot \mathcal{O}\left(-d_{1}-1\right) \rightarrow m \cdot \mathcal{O}\left(-d_{1}\right) \rightarrow E \rightarrow 0 \tag{10}
\end{equation*}
$$

with $m=2 d_{1}-d+3$.
This can be proved as follows. From the exact sequence (3) we have $h^{0}\left(\mathcal{I}_{Z}\left(2 d_{1}-d\right)\right)=0$ (observe that $Z \neq \emptyset$ because $2 r+1>d)$. It follows that $\operatorname{deg}(Z) \geq h^{0}\left(\mathcal{O}\left(2 d_{1}-d\right)\right.$). The assumption $\tau=\tau_{+}$implies (use (4)) that we have equality: $\operatorname{deg}(Z)=h^{0}\left(\mathcal{O}\left(2 d_{1}-d\right)\right.$). This implies $h^{1}\left(\mathcal{I}_{Z}\left(2 d_{1}-d\right)\right)=0$. It follows (Castelnuovo-Mumford's lemma or numerical character) that the minimal free resolution of \mathcal{I}_{Z} is: $0 \rightarrow s \cdot \mathcal{O}(-s-1) \rightarrow(s+1) \cdot \mathcal{O}(-s) \rightarrow$ $\mathcal{I}_{Z} \rightarrow 0$, with $s=2 d_{1}-d+1$. We conclude with Lemma 3.

Conversely if we have (10), by Lemma 3 we get that \mathcal{I}_{Z} has a linear resolution and $\operatorname{deg}(Z)=h^{0}\left(\mathcal{O}\left(2 d_{1}-d\right)\right)$. This implies $\tau=\tau_{+}$.

Then the authors ask ([7] Conjecture 1.2)) if for any integer $d \geq 3$ and for any integer r, $d / 2 \leq r \leq d-1$, there exists Σ with $d_{1}=r$ and $\tau=\tau_{+}$. I don't know the answer in general but, in the framework of q.c.i., the answer is yes:

Proposition 15. With notations as above, for every $d \geq 3$ and for every integer r, $d / 2 \leq r \leq d-1$, there exists a q.c.i. subscheme $\Sigma \subset \mathbb{P}^{2}$, of degree τ_{+}, with $d_{1}=r$

Proof. We recall that a general set of $s(s+1) / 2$ points has a linear resolution:

$$
\begin{equation*}
0 \rightarrow s \cdot \mathcal{O}(-s-1) \rightarrow(s+1) \cdot \mathcal{O}(-s) \rightarrow \mathcal{I}_{Z} \rightarrow 0 \tag{11}
\end{equation*}
$$

Actually to have such a resolution is equivalent to have $h^{0}\left(\mathcal{I}_{Z}(s-1)\right)=0$. Since the CayleyBachararch condition $\mathrm{CB}(s-3)$ (see for instance [3]) is obviously satisfied we may associate a rank two vector bundle to $\mathcal{I}_{Z}(s): 0 \rightarrow \mathcal{O} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z}(s) \rightarrow 0$. We have $c_{1}(\mathcal{E})=s$ and $c_{2}(\mathcal{E})=s(s+1) / 2=\operatorname{deg}(Z)$. Since $h^{1}(\mathcal{O})=0$ and $\mathcal{I}_{Z}(s)$ and \mathcal{O} are globally generated, \mathcal{E} also is globally generated. For $a \geq 0$ let us consider a section of $\mathcal{E}(a): 0 \rightarrow \mathcal{O} \rightarrow \mathcal{E}(a) \rightarrow$ $\mathcal{I}_{\Gamma}(2 a+s) \rightarrow 0$. For $k \geq a+s, \mathcal{I}_{\Gamma}(k)$ is globally generated and we can link Γ to Σ by a complete intersection of type (k, k). By mapping cone we get, if $k=2 a+s$:

$$
\begin{equation*}
0 \rightarrow \mathcal{E}(-3 a-2 s) \rightarrow 3 . \mathcal{O}(-2 a-s) \rightarrow \mathcal{I}_{\Sigma} \rightarrow 0 \tag{12}
\end{equation*}
$$

We have $c_{2}(\mathcal{E}(a))=a s+s(s+1) / 2+a^{2}=\operatorname{deg}(\Gamma)$. It follows that $\tau:=\operatorname{deg}(\Sigma)=3 a^{2}+$ $3 a s+s(s-1) / 2$. Since $d_{1}=a+s(E:=\mathcal{E}(-a-s))$, it is easy to check that $\tau=\tau_{+}$.

Let d be an integer. Assume d odd, $d=2 \delta+1$. For $1 \leq \rho \leq \delta$, set $a=\delta-\rho, s=2 \rho$, $d_{1}=a+s$ and $d=2 a+s+1$. Then the construction above yields Σ of degree τ_{+}, q.c.i. of three curves of degree $d-1$, with $d_{1}=a+s$. We have $\delta+1 \leq d_{1} \leq 2 \delta$.

If $d=2 \delta$, for $0 \leq \rho \leq \delta-1$, set $a=\delta-\rho-1$ and $s=2 \rho+1\left(d_{1}=a+s\right)$.

Remark 16. It is not clear at all that there are examples with Σ a jacobian set. For some partial results see [7], section 4.

More generally to characterize the zero-dimensional subschemes that are jacobian sets seems quite a challenge.

It is possible to give a little improvement, namely:

Proposition 17. Assume $2 d_{1}+1>d$ and $\tau=\tau_{+}-1$. Set $s:=2 d_{1}-d$. Then we have two possibilities:
(a) The minimal free resolution of \mathcal{I}_{Z} is:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-s-2) \oplus(s-2) \cdot \mathcal{O}(-s-1) \rightarrow s \cdot \mathcal{O}(-s) \rightarrow \mathcal{I}_{Z} \rightarrow 0 \tag{13}
\end{equation*}
$$

In this case $m=2 d_{1}-d+1$ and $d_{i}=d_{1}, \forall i$.
(b) The minimal free resolution of \mathcal{I}_{Z} is:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-s-2) \oplus(s-1) \cdot \mathcal{O}(-s-1) \rightarrow \mathcal{O}(-s-1) \oplus s \cdot \mathcal{O}(-s) \rightarrow \mathcal{I}_{Z} \rightarrow 0 \tag{14}
\end{equation*}
$$

In this case $m=2 d_{1}-d+2$ and $d_{i}=d_{1}, 2 \leq i<m, d_{m}=d_{1}+1$.

Proof. Arguing exactly as above this time we have $\operatorname{deg} Z=h^{0}(\mathcal{O}(s-1))+1, h^{0}\left(\mathcal{I}_{Z}(s-1)\right)=$ 0 , hence $h^{1}\left(\mathcal{I}_{Z}(s-1)\right)=1$. Let $0 \rightarrow \bigoplus^{t} \mathcal{O}\left(-\beta_{j}\right) \rightarrow \bigoplus^{t+1} \mathcal{O}\left(-\alpha_{i}\right) \rightarrow \mathcal{I}_{Z} \rightarrow 0$ denote the minimal free resolution of \mathcal{I}_{Z}. Since $\beta^{+}>\alpha^{+}\left(\beta^{+}=\max \left\{\beta_{j}\right\}\right.$ and the same for $\left.\alpha^{+}\right)$and since $\beta^{+}-3=\max \left\{k \mid h^{1}\left(\mathcal{I}_{Z}(k)\right) \neq 0\right\}$, we see that $\beta^{+}=s+2$ (with coefficient equal to 1 because $\left.h^{1}\left(\mathcal{I}_{Z}(s-1)\right)=1\right)$. It follows that $H_{*}^{0}\left(\mathcal{I}_{Z}\right)$ is generated in degrees $\leq s+1$. Of course we have s minimal generators of degree s and in general nothing else (it is easy to produce examples for any s). We conclude that in this case the resolution is like in (a).

What about generators of degree $s+1$? If there at least two such generators, then the matrix of the resolution has two rows of the form $(L, 0, \ldots, 0)$. By erasing another row, we get a maximal minor which is zero, but this is impossible (the maximal minors are the generators). So there is at most one generator of degree $s+1$. In this case the resolution is like in (b). Examples exist for any s : take $s+1$ points on a line and the remaining ones in general position.

References

[1] Artal Bartolo, E.-Gorrochategui, L.- Luengo, I.-Melle-Hernandez, A.: On some conjectures about free and nearly free divisors, in: Singularities and Computer Algebra, Festschrift for Gert-Martin Greuel on the Occasion of his 70th Birthday,1-19, Springer (2017)
[2] Beauville, A.: Surfaces algébriques complexes, Astérisque 54, SMF (1978)
[3] Catanese, F.: Footnotes to a theorem of I. Reider, Lecture Notes in Math., 1417, 67-74, Springer (1990)
[4] Choudary, A.D.R.-Dimca, A.: Koszul complexes and hypersurface singularities, Proc. Amer. Math. Soc., 121, 1009-1016 (1994)
[5] Dimca, A.-Sernesi, E.: Syzygies and logarithmic vector fields along plane curves, J. de l'École Polytechnique-Mathématiques 1, 247-267 (2014)
[6] Dimca, A.-Sticlaru, G.: Plane curves with three syzygies, plus-one generated curves, and nearly cuspidal curves, arXiv:1810.11766v7 [math.AG], 28 Jan (2019)
[7] Dimca, A.-Sticlaru, G.: Jacobian syzygies and plane curves with maximal global Tjurina number, arXiv:1901.05915v3 [math.AG], 11 Feb (2019)
[8] Dolgachev, I.-Kapranov, M.: Arrangements of hyperplanes and vector bundles on \mathbb{P}^{n}, Duke Mathematical Journal 71, 633-664 (1993)
[9] du Plessis A.A.- Wall C.T.C.: Application of the theory of the discriminant to highly singular plane curves, Math. Proc. Camb. Phil. Soc., 126, 259-266 (1999)
[10] Eisenbud, D.: The geometry of syzygies, GTM 229, Springer (2005)
[11] Ellia, Ph.: Quasi complete intersections and global Tjurina number of plane curves, J. Pure Appl. Algebra (2019), https://doi.org/10.1016/j.jpaa.2019.05.014
[12] Ellia, Ph.: On the cohomology of rank two vector bundles on \mathbb{P}^{2} and a theorem of Chiantini and Valabrega, arXiv:1901.00807v1 [math.AG] 3 Jan (2019)
[13] Marchesi, S.-Vallès, J.: Nearly free curves and arrangements: a vector bundle point of view, arXiv:1712.0486v2 [math.AG] 11 Oct 2018 (2018)
[14] Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Univ. Tokyo, 27, 265-291 (1980)
[15] Sernesi, E.: The local cohomology of the jacobian ring, Doc. Math., 19, 541-563 (2014)
[16] Simis, A.-Tohăneanu, S.: Homology of homogeneous divisors, Israel J. of Mat. 200, 449-487 (2014)
[17] Yoshinaga, M.: Freeness of hyperplane arrangement and related topics, Ann. Fac. Sci. Toulouse 23, 483-512 (2014)

Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli 30, 44121 Ferrara, Italy.

Email address: phe@unife.it

[^0]: Date: July 27, 2019.
 2010 Mathematics Subject Classification. Primary 14H50; Secondary 14M06, 14M07, 13D02.
 Key words and phrases. quasi complete intersections, vector bundle, syzygies, global Tjurina number, plane curves.

