Light-driven water oxidation is achieved with the Ru(bpy)32+/S2O82- cycle employing the highly active Ir-blue water oxidation catalyst, namely, an IrIV,IV2(pyalc)2 μ-oxo-dimer [pyalc = 2-(2′-pyridyl)-2-propanoate]. Ir-blue is readily formed by stepwise oxidation of the monomeric Ir(III) precursor 1 by the photogenerated Ru(bpy)33+, with a quantum yield φ of up to 0.10. Transient absorption spectroscopy and kinetic evidence point to a stepwise mechanism, where the primary event occurs via a fast photoinduced electron transfer from 1 to Ru(bpy)33+, leading to the Ir(IV) monomer I1 (k1 ∼108 M-1 s-1). The competent Ir-blue catalyst is then obtained from I1 upon photooxidative loss of the Cp∗ ligand and dimerization. The Ir-blue catalyst is active in the Ru(bpy)32+/S2O82- light-driven water oxidation cycle, where it undergoes two fast photoinduced electron transfers to Ru(bpy)33+ [with kIr-blue = (3.00 ± 0.02) × 108 M-1 s-1 for the primary event, outperforming iridium oxide nanoparticles by ca. 2 orders of magnitude], leading to a IrV,V2 steady-state intermediate involved in O-O bond formation. The quantum yield for oxygen evolution depends on the photon flux, showing a saturation regime and reaching an impressive value of φ(O2) = 0.32 ± 0.01 (corresponding to a quantum efficiency of 64 ± 2%) at low irradiation intensity. This result highlights the key requirement of orchestrating the rate of the photochemical events with dark catalytic turnover.

Light-driven water oxidation with the Ir-blue catalyst and the Ru(bpy)32+/S2O82– cycle: photogeneration of active dimers, electron-transfer kinetics, and light synchronization for oxygen evolution with high quantum efficiency

Natali M.
;
2019

Abstract

Light-driven water oxidation is achieved with the Ru(bpy)32+/S2O82- cycle employing the highly active Ir-blue water oxidation catalyst, namely, an IrIV,IV2(pyalc)2 μ-oxo-dimer [pyalc = 2-(2′-pyridyl)-2-propanoate]. Ir-blue is readily formed by stepwise oxidation of the monomeric Ir(III) precursor 1 by the photogenerated Ru(bpy)33+, with a quantum yield φ of up to 0.10. Transient absorption spectroscopy and kinetic evidence point to a stepwise mechanism, where the primary event occurs via a fast photoinduced electron transfer from 1 to Ru(bpy)33+, leading to the Ir(IV) monomer I1 (k1 ∼108 M-1 s-1). The competent Ir-blue catalyst is then obtained from I1 upon photooxidative loss of the Cp∗ ligand and dimerization. The Ir-blue catalyst is active in the Ru(bpy)32+/S2O82- light-driven water oxidation cycle, where it undergoes two fast photoinduced electron transfers to Ru(bpy)33+ [with kIr-blue = (3.00 ± 0.02) × 108 M-1 s-1 for the primary event, outperforming iridium oxide nanoparticles by ca. 2 orders of magnitude], leading to a IrV,V2 steady-state intermediate involved in O-O bond formation. The quantum yield for oxygen evolution depends on the photon flux, showing a saturation regime and reaching an impressive value of φ(O2) = 0.32 ± 0.01 (corresponding to a quantum efficiency of 64 ± 2%) at low irradiation intensity. This result highlights the key requirement of orchestrating the rate of the photochemical events with dark catalytic turnover.
2019
Volpe, A.; Tubaro, C.; Natali, M.; Sartorel, A.; Brudvig, G. W.; Bonchio, M.
File in questo prodotto:
File Dimensione Formato  
2018.natali.light-driven.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2413351
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact