Real-time mapping reservoir fluids distribution during hydrocarbon production, or during injection operation, represents a crucial issue and a big challenge at the same time. In this article, we present a new approach based on single-well and cross-well electric measurements. We use electrodes permanently installed on the well casing and electrically insulated from it. We tested our approach through a two-steps workflow. In the first step, we performed forward and inverse modelling on realistic production scenarios. In the second step, we acquired, processed and inverted real data acquired in laboratory, where we tested small-scale scenarios of hydrocarbon production. We acquired and inverted DC (Direct Current) data. Our objective was to reconstruct the variations of the 3D distribution of electric resistivity during the various phases of oil production. The retrieved models reproduced properly the experimental movements of fluids observed in our lab measurements. Finally, modelling and inversion of both synthetic and real data confirm that cross-hole DC method allows mapping reservoir fluid variations even in case of predominant metallic components of the well completion.

Real-Time Hydrocarbon Mapping by Time-Lapse Borehole Electric Tomography

Rizzo, Enzo;
2018

Abstract

Real-time mapping reservoir fluids distribution during hydrocarbon production, or during injection operation, represents a crucial issue and a big challenge at the same time. In this article, we present a new approach based on single-well and cross-well electric measurements. We use electrodes permanently installed on the well casing and electrically insulated from it. We tested our approach through a two-steps workflow. In the first step, we performed forward and inverse modelling on realistic production scenarios. In the second step, we acquired, processed and inverted real data acquired in laboratory, where we tested small-scale scenarios of hydrocarbon production. We acquired and inverted DC (Direct Current) data. Our objective was to reconstruct the variations of the 3D distribution of electric resistivity during the various phases of oil production. The retrieved models reproduced properly the experimental movements of fluids observed in our lab measurements. Finally, modelling and inversion of both synthetic and real data confirm that cross-hole DC method allows mapping reservoir fluid variations even in case of predominant metallic components of the well completion.
2018
978-1-61399-632-4
File in questo prodotto:
File Dimensione Formato  
11392-2412850_Editoriale_4D borehole ET_Hydrocarbon_Rizzo Enzo.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2412850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact