A new series of amino-3,5-dicyanopyridines (1-31) was synthesized and biologically evaluated in order to further investigate the potential of this scaffold to obtain adenosine receptor (AR) ligands. In general, the modifications performed have led to compounds having high to good human (h) A1AR affinity and an inverse agonist profile. While most of the compounds are hA1AR-selective, some derivatives behave as mixed hA1AR inverse agonists/A2A and A2B AR antagonists. The latter compounds (9-12) showed that they reduce oxaliplatin-induced neuropathic pain by a mechanism involving the alpha7 subtype of nAchRs, similar to the nonselective AR antagonist caffeine, taken as the reference compound. Along with the pharmacological evaluation, chemical stability of methyl 3-(((6-amino-3,5-dicyano-4-(furan-2-yl)pyridin-2-yl)sulfanyl)methyl)benzoate 10 was assessed in plasma matrices (rat and human), and molecular modeling studies were carried out to better rationalize the available structure-activity relationships.

Modifications on the amino-3,5-dicyanopyridine core to obtain multifaceted adenosine receptor ligands with antineuropathic activity

Varani K.;Vincenzi F.;Pasquini S.;
2019

Abstract

A new series of amino-3,5-dicyanopyridines (1-31) was synthesized and biologically evaluated in order to further investigate the potential of this scaffold to obtain adenosine receptor (AR) ligands. In general, the modifications performed have led to compounds having high to good human (h) A1AR affinity and an inverse agonist profile. While most of the compounds are hA1AR-selective, some derivatives behave as mixed hA1AR inverse agonists/A2A and A2B AR antagonists. The latter compounds (9-12) showed that they reduce oxaliplatin-induced neuropathic pain by a mechanism involving the alpha7 subtype of nAchRs, similar to the nonselective AR antagonist caffeine, taken as the reference compound. Along with the pharmacological evaluation, chemical stability of methyl 3-(((6-amino-3,5-dicyano-4-(furan-2-yl)pyridin-2-yl)sulfanyl)methyl)benzoate 10 was assessed in plasma matrices (rat and human), and molecular modeling studies were carried out to better rationalize the available structure-activity relationships.
2019
Betti, M.; Catarzi, D.; Varano, F.; Falsini, M.; Varani, K.; Vincenzi, F.; Pasquini, S.; Di Cesare Mannelli, L.; Ghelardini, C.; Lucarini, E.; Dal Ben, D.; Spinaci, A.; Bartolucci, G.; Menicatti, M.; Colotta, V.
File in questo prodotto:
File Dimensione Formato  
acs.jmedchem.9b00106 (1).pdf

solo gestori archivio

Descrizione: Articolo su rivista
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.12 MB
Formato Adobe PDF
5.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
acs.jmedchem.9b00106.pdf

accesso aperto

Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2411938
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact