In this paper a uniqueness theorem for classical solutions is proved in the case of the evolution of a nanofluid filling a bounded domain under the Boussinesq approximation. The mass density of the nanofluid depends on the temperature and on the nanoparticle volume fraction. A decay in time of a suitable energy is achieved assuming that the material parameters satisfy some conditions. These results are then generalized in the presence of a magnetic field.
Uniqueness and decay results for a Boussinesquian nanofluid
G. Giantesio
Membro del Collaboration Group
;M. C. Patria
2019
Abstract
In this paper a uniqueness theorem for classical solutions is proved in the case of the evolution of a nanofluid filling a bounded domain under the Boussinesq approximation. The mass density of the nanofluid depends on the temperature and on the nanoparticle volume fraction. A decay in time of a suitable energy is achieved assuming that the material parameters satisfy some conditions. These results are then generalized in the presence of a magnetic field.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
article IJAM.pdf
accesso aperto
Tipologia:
Full text (versione editoriale)
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
131.35 kB
Formato
Adobe PDF
|
131.35 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.