In this paper a uniqueness theorem for classical solutions is proved in the case of the evolution of a nanofluid filling a bounded domain under the Boussinesq approximation. The mass density of the nanofluid depends on the temperature and on the nanoparticle volume fraction. A decay in time of a suitable energy is achieved assuming that the material parameters satisfy some conditions. These results are then generalized in the presence of a magnetic field.

Uniqueness and decay results for a Boussinesquian nanofluid

G. Giantesio
Membro del Collaboration Group
;
M. C. Patria
2019

Abstract

In this paper a uniqueness theorem for classical solutions is proved in the case of the evolution of a nanofluid filling a bounded domain under the Boussinesq approximation. The mass density of the nanofluid depends on the temperature and on the nanoparticle volume fraction. A decay in time of a suitable energy is achieved assuming that the material parameters satisfy some conditions. These results are then generalized in the presence of a magnetic field.
2019
Borrelli, A.; Giantesio, G.; Patria, M. C.
File in questo prodotto:
File Dimensione Formato  
article IJAM.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 131.35 kB
Formato Adobe PDF
131.35 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2410518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact