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Abstract: In this paper a uniqueness theorem for classical solutions is proved
in the case of the evolution of a nanofluid filling a bounded domain under the
Boussinesq approximation. The mass density of the nanofluid depends on the
temperature and on the nanoparticle volume fraction. A decay in time of a
suitable energy is achieved assuming that the material parameters satisfy some
conditions. These results are then generalized in the presence of a magnetic
field.
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1. Introduction

Nanofluids are characterized by a high thermal conductivity obtained by sus-
pending nanometer-sized (1-100 nm) solid metal (Cu, Fe, Au) or metal oxide
(CuO, Al2O3) particles into a base liquid with low thermal conductivity, such
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as water, oils, ethylene glycol, etc. The presence of a few percents of nanopar-
ticles produces a relevant enhancement of the effective thermal conductivity of
nanofluids.

The concept of nanofluid was first introduced by Choi [5] in 1995 and it
has been extensively studied recently (see for example [6, 7, 8, 9, 11, 12, 14,
13, 15, 16, 17, 22, 19, 23, 18, 25]) because of its application to a wide class
of engineering problems, such as chemical processes and cooling of electronic
equipments.

There are two main theories of modeling nanofluids: single-phase and two-
phase. For an exhaustive review of the theory and the applications we refer to
[20]. In this paper we adopt the two-phase model formulated by Buongiorno
[4, 2] in which the nanofluid is considered as a two-component mixture and ther-
mophoresis and Brownian motion are the principal mechanisms that produce a
relative velocity between the nanoparticles and the base fluid.

While there is a vast literature concerning the study of specific problems
involving nanofluids, to the best of our knowledge there are no results of unique-
ness and decay in time of the energy.

In this paper we consider the evolution of a nanofluid filling a bounded do-
main under the Boussinesq approximation taking account that the mass density
of the nanofluid depends on the temperature and on the nanoparticle volume
fraction.

We first formulate the initial-boundary problem in dimensionless form in
Section 2, we then state in Section 3 the uniqueness theorem for classical so-
lutions without any restriction on the material parameters by introducing a
suitable energy.

Section 4 is devoted to obtain a decay in time result of the energy supposing
that the material parameters satisfy some inequalities.

Finally, in Section 5 we extend the previous results to the case in which a
magnetic field is impressed to the nanofluid without modifying the hypotheses
on the material parameters. To this regard, we notice that significant enhance-
ment in the thermal conductivity of nanofluids has been experimentally shown
when magnetic fields are applied (see for example [1, 21, 3, 10]).

2. Statement of the problem

In this section we introduce the initial-boundary value problem which we would
like to study in the details.

Let us consider the evolution of a Boussinesquian homogeneous nanofluid
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filling a bounded domain Ω. We denote by v, p, T,Φ the velocity, the modi-
fied pressure (given by the difference between the pressure and the hydrostatic
pressure), the temperature and the nanoparticle volume fraction, respectively.
We assume that the gravity g is aligned with the unit vector e3.

The governing field equations are

ρR

(

∂v

∂t
+ v · ∇v

)

= −∇p+ µ△v

− ρR[αT (T − TR)− αΦ(Φ− ΦR)]g,

∇ · v = 0,

ρRc

(

∂T

∂t
+∇T · v

)

= k△T + ρpcp

(

DB∇T · ∇Φ+DT
|∇T |2
T

)

,

∂Φ

∂t
+∇Φ · v = ∇ ·

(

DB∇Φ+DT
∇T

T

)

,

for all (x, t) ∈ Ω× (0,+∞). (1)

We have followed the Buongiorno two-phase model ([4]) for the description
of the nanofluid, while, unlike Buongiorno, we suppose slightly compressibility
in order to apply the Boussinesq approximation. More precisely, we take into
account that the mass density ρ of the nanofluid depends on T and Φ and that
it is the average of the nanoparticle density ρp and base fluid density ρbf :

ρ = Φρp + (1−Φ)ρbf .

In (1) we have assumed that there exists a configuration in which the tempera-
ture T and the nanoparticle volume fraction Φ take the constant values TR and
ΦR; ρR = ρ(TR,ΦR) and

αT = − 1

ρR

∂ρ

∂T
(TR,ΦR), αΦ =

1

ρR

∂ρ

∂Φ
(TR,ΦR).

We remark that from physical considerations the thermal coefficient of vol-
ume expansion αT and the composition coefficient of volume expansion αΦ are
positive. Moreover, we have ρ ≃ ρbf because Φ ≪ 1 ([24]).

In (1)3,4 the parameter µ is the fluid dynamical viscosity coefficient, c, cp
are the nanofluid and nanoparticle specific heat and k is the nanofluid thermal
conductivity. We take into account Brownian diffusion and thermophoresis by
means of the coefficients DB and DT and, as it is usual, we neglect dissipative
terms in (1)3.
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To (1) we associate the initial conditions

v(x, 0) = v0(x), T (x, 0) = T0(x), Φ(x, 0) = Φ0(x),

∀x ∈ Ω (2)

and the boundary conditions

v|∂Ω×[0,+∞) = v∗, T |∂Ω×[0,+∞)= T ∗,

Φ |∂Ω×[0,+∞)= Φ∗. (3)

The fields v0, T0,Φ0,v
∗, T ∗,Φ∗ are prescribed on the appropriate domains and

satisfy suitable regularity and compatibility conditions. Moreover we suppose
that the domain Ω is bounded and that it is possible to apply the divergence
theorem.

It is convenient to rewrite problem (1) in dimensionless form by using the
following transformations:

V =
v

V
, ϑ =

T − TR

T
, ϕ =

Φ− ΦR

Φ
, P =

p

ρRV
2 , ν =

µ

ρR
,

x′ =
x

L
, t′ =

V t

L
, V =

ν

L
, T =

√

ν3△T

αT γL3g
,

Φ =

√

ν3ΦR

αΦDBL3g
, (4)

where V , L, △T (> 0) are the reference velocity, length, characteristic temper-
ature difference, respectively, while the thermal diffusivity γ is given by

γ =
k

ρRc
. (5)

We assume that the change of temperature in the nanofluid is small comparing
to the temperature TR so that we can replace T by TR in the denominator of
(1)3,4.

Problem (1) in dimensionless form becomes

∂V

∂t
+V · ∇V = −∇P +△V+ (RTϑ−RΦϕ)e3,

∇ ·V = 0,

Pr

(

∂ϑ

∂t
+V · ∇ϑ

)

= △ϑ+
1

Le

(

∇ϑ · ∇ϕ+
1

NBT
|∇ϑ|2

)

,
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Sc

(

∂ϕ

∂t
+V · ∇ϕ

)

= △ϕ+
1

NBT
△ϑ, (6)

where we used the following dimensionless numbers:

Pr =
ν

γ
(Prandtl number),

R2
T =

αTL
3△T g

νγ
(temperature Rayleigh number),

R2
Φ =

αΦL
3ΦRg

νγ
(nanoparticle volume fraction Rayleigh number),

Le =
k

ρP cPDBΦ
(Lewis number),

NBT =
DBTRΦ

DTT
, Sc =

ν

DB
(Schmidt number). (7)

For the sake of brevity, we continue to denote by Ω the transformed of the
domain occupied by the nanofluid, we omit to write the initial (2) and boundary
conditions (3) in dimensionless form and in the sequel we will imply that they
are dimensionless.

We confine ourselves to consider classical solutions to the initial-boundary
value problem (V, P, ϑ, ϕ), i.e.

V, ϑ, ϕ ∈ C2,1(Ω × (0,+∞)) ∩ C(Ω× [0,+∞)),

P ∈ C1,0(Ω× (0,+∞)) ∩ C(Ω× [0,+∞)),

∇V, ∇ϑ, ∇ϕ ∈ C(Ω× [0,+∞)).

3. Uniqueness Theorem

In this section we prove the uniqueness of the solution of the problem (6), (2),
(3) without any restriction on the material parameters.

Theorem 1. Let (Vi, Pi, ϑi, ϕi) i = 1, 2 be two solutions of the problem

(6), (2), (3). Then

V1 = V2, P1 = P2 +Π, ϑ1 = ϑ2, ϕ1 = ϕ2 in Ω× [0,+∞),

with Π = Π(t) an arbitrary function.
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Proof. Let (V, Π, ϑ, ϕ) denote the difference between the two solutions
(Vi, Pi, ϑi, ϕi) i = 1, 2 of the problem (6), (2), (3). Then the following system
is satisfied

∂V

∂t
+V1 · ∇V1 −V2 · ∇V2 = −∇Π+△V+ (RTϑ−RΦϕ)e3,

∇ ·V = 0,

Pr

(

∂ϑ

∂t
+V1 · ∇ϑ1 −V2 · ∇ϑ2

)

= △ϑ

+
1

Le

[

∇ϑ1 · ∇ϕ1 −∇ϑ2 · ∇ϕ2 +
1

NBT
(|∇ϑ1|2 − |∇ϑ2|2)

]

,

Sc

(

∂ϕ

∂t
+V1 · ∇ϕ1 −V2 · ∇ϕ2

)

= △ϕ+
1

NBT
△ϑ (8)

together with homogeneous initial and boundary conditions for V, ϑ, ϕ.
Let us multiply (8)1 by V, (8)3 by ϑ and (8)4 by Aϕ with A some dimen-

sionless positive constant to be specified and sum the resulting equations.
We now develop separately some terms:

(V1 · ∇V1 −V2 · ∇V2) ·V = V · ∇V1 ·V +
1

2
V2 · ∇V2,

(V1 · ∇ϑ1 −V2 · ∇ϑ2)ϑ = (V · ∇ϑ1)ϑ+
1

2
V2 · ∇ϑ2,

(∇ϑ1 · ∇ϕ1 −∇ϑ2 · ∇ϕ2)ϑ = (∇ϑ2 · ∇ϕ+∇ϑ · ∇ϕ1)ϑ,

(|∇ϑ1|2 − |∇ϑ2|2)ϑ = ϑ∇(ϑ1 + ϑ2) · ∇ϑ,

(V1 · ∇ϕ1 −V2 · ∇ϕ2)ϕ = ϕV · ∇ϕ1 +
1

2
V2 · ∇ϕ2. (9)

At this point we fix t ∈ (0,+∞) and integrate by parts over Ω ∀t ∈ [0, t].
Taking into account (8)2, (9), the divergence theorem and the homogeneous
boundary conditions (3), after some calculations we arrive at

d

dt

1

2

∫

Ω

(

V2 + Prϑ
2 +AScϕ2

)

dΩ

=

∫

Ω

[

−V · ∇V1 ·V − |∇V|2 + (RTϑ−RΦϕ)V3

]

dΩ

+

∫

Ω

[

−Prϑ∇ϑ1 ·V − |∇ϑ|2 + 1

Le
ϑ(∇ϑ2 · ∇ϕ+∇ϑ · ∇ϕ1)

+
1

LeNBT
ϑ∇(ϑ1 + ϑ2) · ∇ϑ

]

dΩ
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+

∫

Ω
−A

(

Scϕ∇ϕ1 ·V+ |∇ϕ|2 + 1

NBT
∇ϑ · ∇ϕ

)

dΩ. (10)

In order to choose the constant A we consider the quadratic form

ω(ξ) =
3

∑

i=1

ξ2i +A

6
∑

i=4

ξ2i +
A

NBT
(ξ1ξ4 + ξ2ξ5 + ξ3ξ6), ξ ∈ R

6.

As it is easy to verify, ω is positive definite if and only if

A

4N2
BT

< 1. (11)

By virtue of this inequality, we deduce that if the material parameter NBT > 1
2 ,

then A = 1 assures that ω is positive definite; while if NBT ≤ 1
2 then A must

be chosen satisfying the inequality A < 4N2
BT .

In any case we have that

ω(ξ) ≥ λmin|ξ|2, (12)

where λmin is the smallest eigenvalue of the matrix associated to ω given by

λmin =
NBT (A+ 1)−

√

N2
BT (A− 1)2 +A2

2NBT
.

These considerations allow us to obtain the inequality

−|∇ϑ|2 −A|∇ϕ|2 −A
1

NBT
∇ϑ · ∇ϕ ≤ −λmin(|∇ϑ|2 + |∇ϕ|2). (13)

We can now estimate some terms at the right hand side of (10) on taking into
account that the involved fields are bounded in Ω× [0, t].

Putting

M1 = max
Ω×[0,t]

|∇V1|, M2 = max
Ω×[0,t]

|∇ϑ1|,

M3 = max
Ω×[0,t]

|∇ϑ2|, M4 = max
Ω×[0,t]

|∇ϕ1|,

we arrive at

−V · ∇V1 ·V − |∇V|2 + (RTϑ−RΦϕ)V3 − Prϑ∇ϑ1 ·V − |∇ϑ|2

+
1

Le
ϑ(∇ϑ2 · ∇ϕ+∇ϑ · ∇ϕ1) +

1

LeNBT
ϑ∇(ϑ1 + ϑ2) · ∇ϑ
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−A

(

Scϕ∇ϕ1 ·V + |∇ϕ|2 + 1

NBT
∇ϑ · ∇ϕ

)

≤ 1

2
(2M1 +RT −RΦ + PrM2 +AScM4)V

2

+
1

2

(

RT +M2 +
M3

Leǫ1
+

M4

Leǫ2
+

M2 +M3

LeNBT ǫ2

)

ϑ2

+
1

2
(AScM4 −RΦ)ϕ

2 +

[

−λmin +
M4ǫ2

2Le
+

(M2 +M3)ǫ2
2LeNBT

]

|∇ϑ|2

+

(

−λmin +
M3ǫ1

2Le

)

|∇ϕ|2, (14)

where ǫ1, ǫ2 are arbitrary positive constants and we used inequality (13).
If we choose

ǫ1 =
2Leλmin

M3
, ǫ2 =

2LeλminNBT

M2 +M3 +M4NBT
, (15)

then (10) and (14) lead to

d

dt

1

2

∫

Ω

(

V2 + Prϑ
2 +AScϕ2

)

dΩ

≤ 1

2

∫

Ω

(

B1V
2 +B2Prϑ

2 +B3AScϕ
2
)

dΩ, (16)

where the coefficients Bi, i = 1, 2, 3, can be easily computed.
Putting

B = max{B1, B2, B3}, EA =
1

2

∫

Ω

(

V2 + Prϑ
2 +AScϕ2

)

dΩ,

we arrive at

d

dt
EA(t) ≤ BEA(t), ∀t ∈ [0, t]. (17)

Therefore we deduce

EA(t) ≤ EA(0)eBt.

By virtue of the initial conditions we have that EA(0) = 0, so that

V(x, t) = 0, ϑ(x, t) = 0, ϕ(x, t) = 0, ∀x ∈ Ω.

For the arbitrariness of t, we get
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V1 = V2, ϑ1 = ϑ2, ϕ1 = ϕ2 in Ω× [0,+∞).

Finally, from (10)1 we have

∇Π = 0 ⇒ Π ≡ Π(t),

which completes the proof.

Remark 1. As it is easy to verify, the uniqueness theorem continues to
hold even if we replace the boundary conditions (3) with

∂ϑ

∂n
|∂Ω×[0,+∞) = q∗ϑ,

∂ϕ

∂n
|∂Ω×[0,+∞) = q∗ϕ,

or we maintain (3)2 and replace (3)3 with

1

NBT

∂ϑ

∂n
|∂Ω×[0,+∞) +

∂ϕ

∂n
|∂Ω×[0,+∞) = j∗,

where n is the unit outward normal to ∂Ω and q∗ϑ, q
∗
ϕ, j

∗ are sufficiently smooth
prescribed fields (see for example [12], [21]).

Actually, we get again an inequality analogous to (16): we have to modify
in a suitable way the expressions of B2 and B3 in the first case and of B3 in
the latter one by inserting maxΩ×[0,t) |V2|.

Remark 2. The function EA represents a suitable (dimensionless) energy
of the nanofluid.

4. Decay in time of the energy EA

In this section we prove the exponential decay in time of the energy EA in
[0, t] with t ∈ (0,∞) for solutions of problem (6), (2), (3) with homogeneous
boundary conditions provided that some suitable inequalities hold.

Theorem 2. Let (V, P, ϑ, ϕ) be the solution of the problem (6), (2),
(3) with homogeneous boundary conditions and t ∈ (0,∞). If the following

inequalities

RT +RΦ <
2

β
, λmin >

β

2
max{RT , RΦ},
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Mt < 2
Le

β
min

{ √
βNBT√

βNBT + 2

(

λmin − βRT

2

)

, λmin − βRΦ

2

}

, (18)

are verified, then there exists a positive constant C, depending on the material

parameters, Poincaré constant of Ω and Mt = maxΩ×[0,t] |∇ϑ|, such that

EA(t) ≤ EA(0) e−Ct, ∀t ∈ [0, t]. (19)

Proof. Fix t and let (V, P, ϑ, ϕ) be the solution of the problem (6), (2),
(3) with homogeneous boundary conditions. The equations (6)1, (6)3 and (6)4
multiplied by V, ϑ and Aϕ respectively are summed and the resulting equation
is integrated over Ω to see that, thanks to integration by parts, we have

d

dt
EA =

∫

Ω

[

−|∇V|2 + (RTϑ−RΦϕ)V3 − |∇ϑ|2
]

dΩ

+

∫

Ω

[

1

Le
ϑ

(

∇ϑ · ∇ϕ+
1

NBT
|∇ϑ|2

)

−A

(

|∇ϕ|2+ 1

NBT
∇ϑ · ∇ϕ

)]

dΩ. (20)

Now, by using Cauchy and Poincaré inequalities, we get
∫

Ω
(RTϑ−RΦϕ)V3dΩ

≤ β

2

∫

Ω
[RT (|∇V|2 + |∇ϑ|2) +RΦ(|∇V|2 + |∇ϕ|2)]dΩ, (21)

where β is the Poincaré constant for Ω.
Applying Cauchy, Schwarz and Poincaré inequalitie,s we obtain

∫

Ω
ϑ

(

∇ϑ · ∇ϕ+
1

NBT
|∇ϑ|2

)

dΩ

≤ Mt

∫

Ω

[(

β

2
+

√
β

NBT

)

|∇ϑ|2 + β

2
|∇ϕ|2

]

dΩ. (22)

Taking into account inequalities (13), (21) and (22) we deduce in [0, t]

d

dt
EA ≤

∫

Ω

[

β

2
(RT +RΦ)− 1

]

|∇V|2dΩ

+

∫

Ω

(

β

2
RT +

βMt

2Le
+

√
βMt

LeNBT
− λmin

)

|∇ϑ|2dΩ

+

∫

Ω

(

βMt

2Le
− β

2
RΦ − λmin

)

|∇ϕ|2dΩ. (23)
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In order to get the thesis, the coefficients of |∇V|2, |∇ϑ|2, |∇ϕ|2 must be
negative, i.e. inequalities (18) must be verified where it is convenient to choose
in λmin the value of A that makes it maximum. This value of λmin is given by
N2

BT

1+N2

BT

.

If Poincaré inequality is again applied, one gets

d

dt
EA(t) ≤ −CEA(t), ∀t ∈ [0, t], (24)

where C = 1
β
min{C1,

C2

Pr
, C3

ASc
}, being Ci, i = 1, 2, 3 the opposite of the coeffi-

cients of the three gradients in (23). From (24) follows that

EA(t) ≤ EA(0)e−Ct, ∀t ∈ [0, t],

which is the desired conclusion.

Remark 3. If inequality (18)3 holds for any t > 0, then EA decays expo-
nentially in [0, +∞). This result may be regarded as a universal stability result
for the basic flow v = 0, T = TR,Φ = ΦR and the basic flow is asymptotically
stable in the mean. Finally, we notice that if we do not consider the Boussinesq
approximation (αT = 0, αΦ = 0) then the previous theorems continue to hold
with the suitable simplifications.

5. Extension of the results to the magnetohydrodynamic case

In this section we suppose that the nanofluid is embedded in a magnetic field
and denote by H the total magnetic field. If the Hall and the displacement
currents are disregarded, in order to formulate the new initial-boundary value
problem we have to modify system (1) by adding in (1)1 the term µe(∇×H)×H

and the equations

∇ ·H = 0,

∂H

∂t
= η△H+∇× (v ×H), (25)

where µe is the magnetic permeability and η the magnetic diffusivity given by

η =
1

σµe
, σ = electrical conductivity.
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Of course we must consider the initial and boundary conditions for the magnetic
field:

H(x, 0) = H0(x), ∀x ∈ Ω,

H|∂Ω×[0,+∞) = H∗. (26)

As it is usual, we modify p by adding the term µe
H

2

2 and continue to denote
by p the new expression of the modified pressure.

Then, in order to write the problem in dimensionless form we use the fol-
lowing transformation for the magnetic field:

h =
H

V
√
µσ

.

After some calculations, the dimensionless equations that govern the magneto-
hydrodynamic flow of the nanofluid become

∂V

∂t
+V · ∇V = −∇P +△V + (RTϑ−RΦϕ)e3 +Rmh · ∇h,

∇ ·V = 0,

Pr

(

∂ϑ

∂t
+V · ∇ϑ

)

= △ϑ+
1

Le

(

∇ϑ · ∇ϕ+
1

NBT
|∇ϑ|2

)

,

Sc

(

∂ϕ

∂t
+V · ∇ϕ

)

= △ϕ+
, 1

NBT
△ϑ,

∇ · h = 0,

Rm
∂h

∂t
= △h+Rm(h · ∇V −V · ∇h), (27)

where Rm = ν
η
is the Reynolds magnetic number and h has the same regularity

properties as V.
By proceeding as in the previous sections we can state a uniqueness theorem

and a decay result for the energy

EAm =
1

2

∫

Ω

(

V2 + Prϑ
2 +AScϕ2 +Rmh2

)

dΩ. (28)

Theorem 3. Let (Vi, Pi, ϑi, ϕi,hi), i = 1, 2, be two solutions of the

problem (27), (2), (3), (26). Then

V1 = V2, P1 = P2 +Π, ϑ1 = ϑ2, ϕ1 = ϕ2,

h1 = h2 in Ω× [0,+∞)

with Π = Π(t) an arbitrary function.
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Proof. The theorem is proved by similar arguments as for Theorem 1; it is
sufficient to consider only the new terms involving the magnetic field.

If we proceed as in the proof of Theorem 1 and set h = h1 − h2, we obtain
an equation deducible from (10) by replacing at the left hand side EA with EAm

and adding at the right hand side the following integral
∫

Ω

[

−|∇h|2 +Rm(h · ∇h1 ·V −V · ∇h1 · h+ h · ∇V1 · h)
]

dΩ.

After putting M5 = maxΩ×[0,t] |∇h1|, the function under the previous integral
can be estimated as

− |∇h|2 +Rm(h · ∇h1 ·V −V · ∇h1 · h+ h · ∇V1 · h)
≤ Rm

[

M5V
2 + (M1 +M5)h

2
]

. (29)

From the equation (10) modified, (13), (14), (15) and (29) we get

d

dt

1

2

∫

Ω

(

V2 + Prϑ
2 +AScϕ2 +Rmh2

)

dΩ

≤ 1

2

∫

Ω

(

B′
1V

2 +B2Prϑ
2 +B3AScϕ

2 +B4Rmh2
)

dΩ, (30)

where the coefficients B2, B3 are the same as in (16) while B′
1 is obtained from

B1 by means of a suitable modification and B4 is new because of the presence
of the magnetic field.

Inequality (30) leads to

d

dt
EAm(t) ≤ BEAm(t), ∀t ∈ [0, t], (31)

where B = max{B′
1, B2, B3, B4}. By using (31) it is easy to complete the

proof of the theorem.

Theorem 4. Let (V, P, ϑ, ϕ,h) be the solution of the problem (27), (2),
(3), (26) with homogeneous boundary conditions and t ∈ (0,∞). If the in-

equalities (18) are verified, then there exists a positive constant Cm, depending

on the material parameters, Poincaré constant of Ω and Mt = maxΩ×[0,t] |∇ϑ|,
such that

EAm(t) ≤ EAm(0) e−Cm t, ∀t ∈ [0, t]. (32)

Proof. By the same arguments used in the proof of Theorem 2, it is easily
to show that
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d

dt
EAm =

∫

Ω

[

−|∇V|2 + (RTϑ−RΦϕ)V3 − |∇ϑ|2 − |∇h|2
]

dΩ+

∫

Ω

[

1

Le
ϑ

(

∇ϑ · ∇ϕ+
1

NBT
|∇ϑ|2

)

−A

(

|∇ϕ|2 + 1

NBT
∇ϑ · ∇ϕ

)]

dΩ, (33)

because the other terms involving the magnetic field do not make any contri-
bution.

An application of Poincaré inequality to h and the arguments of the proof
of Theorem 2 lead us to conclude that under conditions (18)

EAm(t) ≤ EAm(0) e−Cm t, ∀t ∈ [0, t],

where Cm = 1
β
min{C1,

C2

Pr
, C3

ASc
, 1
Rm

}, which completes the proof.

Remark 4. We underline that the presence of the magnetic field may
only modify the decay constant of the energy by means of Rm.
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