We present an analytical derivation of the transport coefficients of a relativistic gas in (2+1) dimensions for both Chapman-Enskog (CE) asymptotics and Grad's expansion methods. We further develop a systematic calibration method, connecting the relaxation time of relativistic kinetic theory to the transport parameters of the associated dissipative hydrodynamic equations. Comparison of our analytical results and numerical simulations shows that the CE method correctly captures dissipative effects, while Grad's method does not, in agreement with previous analyses performed in the (3+1)-dimensional case. These results provide a solid basis for accurately calibrated computational studies of relativistic dissipative flows.

Relativistic dissipation obeys Chapman-Enskog asymptotics: Analytical and numerical evidence as a basis for accurate kinetic simulations

Gabbana A.
;
SIMEONI, Daniele;Tripiccione R.
2019

Abstract

We present an analytical derivation of the transport coefficients of a relativistic gas in (2+1) dimensions for both Chapman-Enskog (CE) asymptotics and Grad's expansion methods. We further develop a systematic calibration method, connecting the relaxation time of relativistic kinetic theory to the transport parameters of the associated dissipative hydrodynamic equations. Comparison of our analytical results and numerical simulations shows that the CE method correctly captures dissipative effects, while Grad's method does not, in agreement with previous analyses performed in the (3+1)-dimensional case. These results provide a solid basis for accurately calibrated computational studies of relativistic dissipative flows.
2019
Gabbana, A.; Simeoni, Daniele; Succi, S.; Tripiccione, R.
File in questo prodotto:
File Dimensione Formato  
1901.08530.pdf

accesso aperto

Descrizione: pre print arXive
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 506.72 kB
Formato Adobe PDF
506.72 kB Adobe PDF Visualizza/Apri
gabbana2019.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 387.82 kB
Formato Adobe PDF
387.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2407925
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact