In recent years, the increasing demand for energy generation from renewable sources has led to a growing attention on wind turbines. Indeed, they represent very complex systems which require reliability, availability, maintainability, safety and, above all, efficiency on the generation of electrical power. Thus, new research challenges arise, in particular in the context of modeling and control. Advanced sustainable control systems can provide the optimization of energy conversion and guarantee the desired performances even in presence of possible anomalous working condition, caused by unexpected faults and malfunctions. This thesis deals with the fault diagnosis and the fault tolerant control of wind turbines, and it proposes novel solutions to the problem of earlier fault detection and accommodation. The developed fault tolerant controller is mainly based on a fault diagnosis module, that provides the on-line information on the faulty or fault-free status of the system, so that the controller action can be compensated. The design of the fault estimators involves data-driven approaches, as they offer an effective tool for coping with a poor analytical knowledge of the system dynamics, together with noise and disturbances. The first data-driven proposed solution relies on fuzzy Takagi-Sugeno (TS) models, that are derived from a clustering c-means algorithm, followed by an identification procedure solving the noise-rejection problem. Then, a second solution makes use of neural networks to describe the strongly nonlinear relationships between measurement and faults. The chosen network architecture belongs to the Nonlinear AutoRegressive with eXogenous input (NARX) topology, as it can represent a dynamic evolution of the system along time. The training of the neural network fault estimators exploits the backpropagation Levenberg-Marquardt algorithm, that processes a set of acquired target data. The developed fault diagnosis and fault tolerant control schemes are tested by means of two high-fidelity benchmark models, that simulate the normal and the faulty behavior of a single wind turbine and a wind farm, respectively. The achieved performances are compared with those of other control strategies, coming from the related literature. Moreover, a Monte Carlo analysis validates the robustness of the proposed systems against the typical parameter uncertainties and disturbances. Finally, the Hardware In the Loop (HIL) test is carried out, in order to assess the performance in a more realistic real-time framework. The effectiveness shown by the achieved results suggests further investigations on the industrial application of the proposed systems.
Nell’ultimo decennio, la crescente richiesta di produzione di energia elettrica da fonti rinnovabili, ha generato una cospicua attenzione nei riguardi delle turbine eoliche. Si tratta di sistemi particolarmente complessi, che richiedono affidabilit`a, sicurezza, manutenzione e, soprattutto, efficienza nella produzione di potenza elettrica. Pertanto, sono sorte nuove sfide nel campo della ricerca e sviluppo, in particolare nel contesto della modellazione e del controllo. Sistemi di controllo sostenibile e all’avanguardia possono ottimizzare la conversione di energia e garantire determinate prestazioni, anche in presenza di condizioni di lavoro anomale, causate da malfunzionamenti e guasti inaspettati. Questa tesi tratta la tematica della diagnosi dei guasti e del controllo tollerante al guasto applicato alle turbine eoliche. Si propongono originali soluzioni relative al problema della pronta rivelazione del guasto e del suo trattamento. Il sistema di controllo che si `e sviluppato `e principalmente basato su un modulo di diagnosi del guasto, che ha il compito di fornire in tempo reale l’informazione sull’eventuale guasto presente, in modo da compensare l’azione di controllo. Il progetto degli stimatori di guasto riguarda strategie basate sui dati, poich´e offrono un efficace strumento per la gestione di sistemi le cui dinamiche sono scarsamente conosciute in termini analitici e presentano rumore e disturbi. Il primo di questi approcci basati sui dati `e ottenuto tramite modelli fuzzy Takagi-Sugeno (TS), derivanti dall’algoritmo di clustering c-means, seguito da una procedura di identificazione dei parametetri che risolve il problema della reiezione dei disturbi. Il secondo metodo proposto si serve di reti neurali artificiali per descrivere le relazioni fortemente non lineari che sussistono fra misure e guasti. L’architettura scelta fa parte della topologia Non lineare Autoregressiva con ingresso esogeno (NARX), dato che pu`o rappresentare l’evoluzione dinamica di un sistema nel tempo. L’addestramento della rete neurale sfrutta l’algoritmo di Levenberg-Marquardt con backpropagation, e processa un insieme di dati-obiettivo direttamente acquisiti. Gli schemi di diagnosi del guasto e controllo tollerante al guasto sono stati testati per mezzo di due modelli benchmark ad alta fedelt`a, i quali simulano rispettivamente il comportamento di una singola turbina e di un parco eolico, sia in condizioni normali, sia di guasto. Le prestazioni ottenute sono state confrontate con quelle di altre strategie di controllo, proposte in letteratura. Inoltre, un’analisi Monte Carlo ha validato la robustezza dei sistemi sviluppati, relativa a tipiche variazioni nei parametri, disturbi e incertezze. 1 2 Infine, si `e effettuato un test Hardware In the Loop (HIL), al fine di valutare le prestazioni in un contesto piu` realistico e real-time. L’efficacia mostrata dai risultati ottenuti suggerisce future ricerche sull’effettiva applicabilit`a industriale dei sistemi proposti.
Data-Driven Fault Diagnosis and Fault Tolerant Control of Wind Turbines
FARSONI, SAVERIO
2016
Abstract
In recent years, the increasing demand for energy generation from renewable sources has led to a growing attention on wind turbines. Indeed, they represent very complex systems which require reliability, availability, maintainability, safety and, above all, efficiency on the generation of electrical power. Thus, new research challenges arise, in particular in the context of modeling and control. Advanced sustainable control systems can provide the optimization of energy conversion and guarantee the desired performances even in presence of possible anomalous working condition, caused by unexpected faults and malfunctions. This thesis deals with the fault diagnosis and the fault tolerant control of wind turbines, and it proposes novel solutions to the problem of earlier fault detection and accommodation. The developed fault tolerant controller is mainly based on a fault diagnosis module, that provides the on-line information on the faulty or fault-free status of the system, so that the controller action can be compensated. The design of the fault estimators involves data-driven approaches, as they offer an effective tool for coping with a poor analytical knowledge of the system dynamics, together with noise and disturbances. The first data-driven proposed solution relies on fuzzy Takagi-Sugeno (TS) models, that are derived from a clustering c-means algorithm, followed by an identification procedure solving the noise-rejection problem. Then, a second solution makes use of neural networks to describe the strongly nonlinear relationships between measurement and faults. The chosen network architecture belongs to the Nonlinear AutoRegressive with eXogenous input (NARX) topology, as it can represent a dynamic evolution of the system along time. The training of the neural network fault estimators exploits the backpropagation Levenberg-Marquardt algorithm, that processes a set of acquired target data. The developed fault diagnosis and fault tolerant control schemes are tested by means of two high-fidelity benchmark models, that simulate the normal and the faulty behavior of a single wind turbine and a wind farm, respectively. The achieved performances are compared with those of other control strategies, coming from the related literature. Moreover, a Monte Carlo analysis validates the robustness of the proposed systems against the typical parameter uncertainties and disturbances. Finally, the Hardware In the Loop (HIL) test is carried out, in order to assess the performance in a more realistic real-time framework. The effectiveness shown by the achieved results suggests further investigations on the industrial application of the proposed systems.File | Dimensione | Formato | |
---|---|---|---|
tesiFarsoni.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico senza Copyright
Dimensione
6.19 MB
Formato
Adobe PDF
|
6.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.