Many biological processes show circadian rhythms, i.e. regular fluctuations along the 24 hours of the day, anticipating daily changes in the environment. Such fluctuations are generated and coordinated by a system of endogenous oscillators, presents in almost all tissues and organs. Peripheral circadian oscillators are coordinated by a central pacemaker, which is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The main role of the SCN is to synchronize body circadian oscillators with those of the external environment. Previous studies identified light, temperature and food as the most important cyclic environmental factors influencing circadian rhythms (Buhr and Takahashi 2013). At molecular level, the circadian clock involves interlocked positive and negative transcriptional and translational feedback loops between the clock genes and their protein products, together with a multi-level post-translational regulation of key clock components (Ripperger et al. 2011). Mutations in the components of the circadian clock could lead to serious, or less serious, alteration of the rhythmicity. In our species, some polymorphisms have previously been associated with abnormal circadian phenotypes and/or sleep-wake regulation. Because the circadian clock is so tightly connected with the environment, it seems logical to expect that adaptation played a significant role in its evolution (Coop et al. 2009). Inferring adaptation from DNA data is no trivial task (Li et al. 2012). Only for a handful of loci, one can confidently conclude that natural selection has shaped patterns of variation. Examples include skin pigmentation (Parra 2007) and the ability to digest lactose (Bersaglieri et al. 2004). As a result, to date the (so far limited) analysis of clock gene diversity in human populations have led to different, and sometimes contradictory, conclusions. As an example, different studies supported either a role of geographicallyvariable selection (Cruciani et al. 2008) or the simple effect of genetic drift (Ciarleglio et al. 2008) to explain the observed patterns of genetic diversity. In this contest, my thesis represents a broad effort to further explore specifically human clock genes’ variation at the worldwide level, investigating the role of natural selection (local adaptation) and demography in shaping the diversity of genes involved in human circadian rhythms. Therefore, I examined evidences of selection using different approaches based on FST and on the correlation with environmental variables. Overall, results here obtained represent evidences that positive selection (mostly local adaptation, clinal adaptation or both) has contributed to the shaping of several patterns of Evolution of Clock Genes in Human population circadian SNPs distribution. Further, clock genes SNPs correlate with environmental factors such as latitude, radiation fluxes and photoperiod. However, these results need to be confirmed by examination of both a wider population database, also including samples from the southern hemisphere, and more environmental factors. In addition, in order to shed light into the forces that played a role in shaping the present-day genetic variation on circadian genes, we could also investigate ancient human DNA. Indeed, thanks to the high-throughput screening methods, it is possible to deeper investigate an increasing number of archaic genomes today available.
Molti processi biologici sono caratterizzati da una ritmicità circadiana, espressa attraverso la fluttuazione nell’arco delle 24 ore, che permette all’organismo di anticipare i quotidiani cambiamenti nell’ambiente circostante. Queste fluttuazioni regolari sono generate e regolate da un sistema endogeno di oscillatori, presente in quasi tutti i tessuti e organi. Gli oscillatori periferici sono coordinati da una struttura centrale, localizzata a livello dei nucei soprachiasmatici (SCN) dell’ipotalamo. La principale funzione del SCN è quella di sincronizzare gli oscillatori circadiani interni con i cambiamenti ambientali. Studi precedenti hanno identificato la luce, la temperatura ed il cibo come i fattori ciclici ambientali in grado di influenzare la ritmicità circadiana di un organismo (Buhr and Takahashi 2013). A livello molecolare, l’orologio circadiano è costituito da due loop: uno positivo ed uno negativo. Entrambi sono caratterizzati da eventi di trascrizione e traduzione tra i geni e le proteine da essi codificare, e da eventi di regolazione post-traduzionale a carico di elementi centrali dell’orologio stesso (Ripperger et al. 2011). Mutazioni a carico degli elementi costituenti l’orologio circadiano possono dar luogo ad alterazioni della ritmicità, con conseguenze più o meno gravi. Nella nostra specie, alcuni polimorfismi in geni dell’orologio circadiano sono stati precedentemente associati ad alterazioni del fenotipo circadiano e/o del meccanismo di regolazione sonno/veglia. In conseguenza alla stretta connessione tra l’orologio circadiano e l’ambiente, è plausibile che fenomeni di adattamento abbiano quindi giocato un ruolo nell’evoluzione dell’orologio (Coop et al. 2009). Tuttavia, fare inferenze su eventi di adattamento alle diverse condizioni esterne, partendo da dati genetici, non è semplice (Li et al. 2012). Infatti, sono pochi i siti del genoma per i quali si può affermare che la selezione naturale abbia avuto un ruolo importante nel dar forma alla variabilità genetica moderna. Tra questi, vi sono i loci coinvolti nella pigmentazione della pelle (Parra 2007) e nella digestione del lattosio (Bersaglieri et al. 2004). Soltanto pochi studi hanno finora indagato i geni orologio in alcune popolazioni umane, mostrando risultati contrastanti. Infatti, alcuni studi supportano l’azione di selezione legata all’ambiente (Cruciani et al. 2008); al contrario, altri studi evidenziano l’azione della deriva genetica (Ciarleglio et al. 2008) come forza evolutiva che ha determinato la variabilità genetica che osserviamo oggi. In questo contesto, il mio lavoro di tesi rappresenta un tentativo di investigare ulteriormente la variabilità genetica umana su scala mondiale. In particolare, ho investigato il ruolo della selezione naturale (adattamento locale) e della demografia nel determinare la Evolution of Clock Genes in Human population variabilità ai geni coinvolti nell’orologio circadiano umano. A tal fine, ho esaminato evidenze di selezione attraverso differenti approcci statistici basati sui valori di FST e sulla correlazione con variabili ambientali. Complessivamente, i risultati ottenuti mostrano come la selezione (principalmente adattamento locale e/o clinale) abbia contribuito alla determinazione della variabilità genetica ai geni dell’orologio. Inoltre, alcuni polimorfismi mostrano una correlazione significativa con variabili ambientali, tra cui la latitudine, il flusso di radiazioni solari ed il fotoperiodo. Nonostante i risultati ottenuti evidenzino l’azione della selezione naturale su alcuni geni circadiani, in futuro si potranno cercare conferme analizzando un campione più ampio, comprendente anche popolazioni dell’emisfero australe, e considerando altri fattori ambientali. Inoltre, per cercare di investigare ulteriormente le forze evolutive che hanno contribuito a plasmare la variabilità genetica moderna, sarà interessante confrontarla con quella dei sempre più numerosi genomi antichi oggi disponibili.
Evolution of clock genes in human populations
DALL'ARA, IRENE
2016
Abstract
Many biological processes show circadian rhythms, i.e. regular fluctuations along the 24 hours of the day, anticipating daily changes in the environment. Such fluctuations are generated and coordinated by a system of endogenous oscillators, presents in almost all tissues and organs. Peripheral circadian oscillators are coordinated by a central pacemaker, which is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The main role of the SCN is to synchronize body circadian oscillators with those of the external environment. Previous studies identified light, temperature and food as the most important cyclic environmental factors influencing circadian rhythms (Buhr and Takahashi 2013). At molecular level, the circadian clock involves interlocked positive and negative transcriptional and translational feedback loops between the clock genes and their protein products, together with a multi-level post-translational regulation of key clock components (Ripperger et al. 2011). Mutations in the components of the circadian clock could lead to serious, or less serious, alteration of the rhythmicity. In our species, some polymorphisms have previously been associated with abnormal circadian phenotypes and/or sleep-wake regulation. Because the circadian clock is so tightly connected with the environment, it seems logical to expect that adaptation played a significant role in its evolution (Coop et al. 2009). Inferring adaptation from DNA data is no trivial task (Li et al. 2012). Only for a handful of loci, one can confidently conclude that natural selection has shaped patterns of variation. Examples include skin pigmentation (Parra 2007) and the ability to digest lactose (Bersaglieri et al. 2004). As a result, to date the (so far limited) analysis of clock gene diversity in human populations have led to different, and sometimes contradictory, conclusions. As an example, different studies supported either a role of geographicallyvariable selection (Cruciani et al. 2008) or the simple effect of genetic drift (Ciarleglio et al. 2008) to explain the observed patterns of genetic diversity. In this contest, my thesis represents a broad effort to further explore specifically human clock genes’ variation at the worldwide level, investigating the role of natural selection (local adaptation) and demography in shaping the diversity of genes involved in human circadian rhythms. Therefore, I examined evidences of selection using different approaches based on FST and on the correlation with environmental variables. Overall, results here obtained represent evidences that positive selection (mostly local adaptation, clinal adaptation or both) has contributed to the shaping of several patterns of Evolution of Clock Genes in Human population circadian SNPs distribution. Further, clock genes SNPs correlate with environmental factors such as latitude, radiation fluxes and photoperiod. However, these results need to be confirmed by examination of both a wider population database, also including samples from the southern hemisphere, and more environmental factors. In addition, in order to shed light into the forces that played a role in shaping the present-day genetic variation on circadian genes, we could also investigate ancient human DNA. Indeed, thanks to the high-throughput screening methods, it is possible to deeper investigate an increasing number of archaic genomes today available.File | Dimensione | Formato | |
---|---|---|---|
DallAraIrene_Tesi_Dottorato.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico senza Copyright
Dimensione
3.53 MB
Formato
Adobe PDF
|
3.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.