The aim of this Thesis entitled “The potential role of some microalgae in biotechnological fields” is to gain further knowledge on the morpho-physiological and biochemical aspects of some microalgae known to be used for biotechnological applications, in order to improve their growth performance, photosynthetic efficiency and biomass composition in the perspective of their exploitation on a large scale cultivation. The topics of this Thesis are organized and subdivided in five chapters. The Chapter 1 is a general introduction on algal biology and biotechnological applications of microalgae in large-scale cultivation. The Chapter 2 is a study on the scaling-up of the cultivation and on the recycling of growth media for the re-cultivation of the green microalgae Neochloris oleoabundans, with the aim of gaining further knowledge on the potential behaviour of this algal strain in 20-L coaxial photobioreactors (PBR). In the first section, it has been demonstrated that the alga can efficiently achieved higher biomass productivity (0.28 gL-1d-1) when it was cultivated mixotrophically in brackish media in the presence of 2.5 gL-1 of glucose as compared to the autotrophic conditions (0.02 gL-1d-1). In addition, the mixotrophic cultivation had a strong impact on photosynthetic activity and lipid content of the alga. In the second section, it has been showed that N. oleoabundans can efficiently grow in its recycling autotrophic and mixotrophic growth media obtained from its previous cultivations in a 20-L PBR. The promotion of growth of the alga was attributed to polyamines, while the alteration of the photosynthetic apparatus is caused by the presence of free fatty acids. This study confirmed that mixotrophic cultivation is a valid and very efficient strategy, allowing to obtain the best compromise between biomass production and lipid accumulation in the scaling-up of the alga. In addition, it has also demonstrated that the recycling of growth media can be efficiently considered a suitable solution in order to reduce the cultivation costs, and the same time providing a more sustainable ecological impact on water resources. The Chapter 3 concerns a comparative study on growth performances, photosynthetic parameters, with special attention to protein content and profile of four Chlorophyta species belonging to the algal classes Chlorophyceae (Neochloris oleoabundans and Scenedesmus acutus) and Trebouxiophyceae (Chlorella vulgaris and Chlorella protothecoides) cultivated under identical culture conditions. In addition to these analyses, SDS-PAGE and Blue-native-PAGE in second dimension electrophoresis were performed with the aim to investigate if some 2 differences occurred in the organisation and assembly of the resolved thylakoid complexes of the four green algae. The results have highlighted the metabolic uniqueness of each strain, resulting in a non-obvious comparison with other species, even the most related ones. Interestingly, S. acutus resulted to be the most promising species to use for several biotechnological applications, since it had showed high capability to accumulate a large amount of proteins (53.2 %DW) and photosynthetic pigment content, which is also accompanied by a more abundant thylakoid protein complexes profile as compared to all the other species. In Chapter 4, two different cultivation strategies were tested for enhancing the biomass productivity and lipid content in the marine diatom Thalassiosira pseudonana with the aim of gaining further knowledge on its biotechnological potential use in the bioenergetics field. In the first section, the diatom was cultivated autotrophically and mixotrophically under different organic carbon source and with the supply of a low-cost carbon source. In the preliminary experiment, results showed that the diatom grown mixotrophically in the presence of 2.5 gL-1 of pure glycerol achieved high biomass concentration (0.5 gDWL-1) and lipid content (6 times higher) as compared to the autotrophic condition (0.3 gDWL-1) and other carbon sources tested. It is worth noting that, in the following experiment, the cultivation of the diatom in the presence of 2.5 gL-1 of crude glycerol, one of the major byproducts of the biodiesel production, allow to achieved similar and high value of biomass productivity of that obtained with the supply of pure glycerol. This could make mixotrophy economically advantageous, especially in the context of a biorefinery approach. In the second section, the diatom T. pseudonana was cultivated in the presence of increasing CO2 concentration with special attention to lipid accumulation. Present results clearly indicated that the diatom cultures grown at 1 and 5% CO2 presented similar and higher biomass productivity (44 and 48 mgAFDWL-1d-1) than air grown cultures (26 mgAFDWL-1d-1). Moreover, lipid content, as revealed by the lipid-specific fluorochrome Nile Red, was 2 times higher in cultures enriched with CO2 than in air grown cultures. The results on the diatom T. pseudonana have clearly demonstrated that this species has a great potential for mitigating CO2 emission coupled with the accumulation of lipids suitable for biodiesel production. Finally in Chapter 5, it has been demonstrated that the application of C. vulgaris as biofertilizer for pea plants (Pisum sativum L. var. Paladio nano) clearly led to an increase in plant growth (leaf area 40% bigger than controls) and yield (more than 70% of DW with respect to the control) of treated-plants. The use of microalgae could be an eco-friendly alternative to chemical fertilizers to be exploited in sustainable agriculture.

Questa Tesi dal titolo “The potential role of some microalgae in biotechnological fields” riguarda uno studio morfo-fisiologico e biochimico di alcune specie microalgali note per essere utilizzate in diverse applicazioni biotecnologiche. L’obiettivo è quello di aumentare le conoscenze di base della fisiologia di questi microorganismi al fine di rendere la loro coltivazione su scala industriale un processo più competitivo e sostenibile. La Tesi è stata sviluppata in cinque capitoli. Il primo capitolo è un’introduzione generale sulle applicazioni biotecnologiche delle microalghe e le conseguenti problematiche riguardanti la loro coltivazione su scala industriale. Nel secondo capitolo si è testata la coltivazione mixotrofica della microalga N. oleoabundans in presenza di 2,5 gL-1 di glucosio in un fotobioreattore coassiale da 20 litri, con lo scopo di aumentare la produttività e valutare gli effetti della mixotrofia sull’efficienza fotosintetica e sull’accumulo di lipidi nell’alga. I risultati hanno mostrato che in condizioni mixotrofiche N. oleoabundans raggiungeva elevati valori di produttività di biomassa (0,28 gL-1d-1) rispetto alla coltivazione in autotrofia (0,02 gL-1d-1). Inoltre, è stato dimostrato che la coltivazione mixotrofica ha avuto un forte impatto sull’efficienza fotosintetica e sul contenuto lipidico dell'alga. Per rendere la coltivazione su larga-scala più ecosostenibile, è stata valutata la possibilità di utilizzare mezzi di coltivazione esausti recuperati dalle precedenti coltivazioni autotrofiche e mixotrofiche in fotobioreattore per una nuova coltivazione della microalga. I risultati ottenuti hanno suggerito che è possibile riciclare il mezzo di coltivazione con lo scopo di ottenere biomassa algale in maniera sostenibile. In particolare, è stato dimostrato che la promozione della crescita di Neochloris nei due terreni esausti era dovuta alla presenza di poliammine nel terreno, mentre la minor efficienza fotosintetica, accompagnata da una disorganizzazione delle membrane tilacoidali dell'apparato fotosintetico dell’alga, è stato attribuito alla presenza di acidi grassi liberi. Il terzo capitolo della Tesi fornisce un approfondimento sul contenuto di proteine e sull’organizzazione dei complessi tilacoidali che caratterizzano le membrane fotosintetiche di quattro specie microalgali appartenenti al gruppo delle Chlorophyta e alle classi Chlorophyceae (Neochloris oleoabundans e Scenedesmus acutus) e Trebouxiophyceae (Chlorella vulgaris e Chlorella protothecoides). Dai risultati ottenuti, la microalga S. acutus ha mostrato un'elevata capacità di accumulare proteine all’interno delle cellule (53,2% DW), con un 2 conseguente più abbondante e complesso profilo delle membrane tilacoidali rispetto alle altre specie. Nel quarto capitolo due differenti strategie di coltivazione sono state testate per migliorare la produttività di biomassa e il contenuto di lipidi della diatomea marina Thalassiosira pseudonana con l'obiettivo di ottenere maggiori conoscenze sul suo potenziale utilizzo in campo bioenergetico. A tale scopo la diatomea è stata coltivata mixotroficamente in presenza di diverse fonti di carbonio organico, quali glucosio, sodio acetato e glicerolo e un prodotto di scarto derivante dalla produzione di biodiesel (glicerolo grezzo). I risultati ottenuti hanno mostrato che la concentrazione di 2,5 gL-1 di glicerolo consentiva di ottenere elevate concentrazioni di biomassa (0,5 gDWL-1) e di contenuto lipidico (6 volte superiore) non soltanto rispetto alla coltivazione in autotrofia (0,3 gDWL-1), ma anche rispetto alle altre fonti di carbonio testate. Inoltre, si è dimostrato che la coltivazione mixotrofica della diatomea in presenza di 2,5 gL-1 di glicerolo grezzo consentiva di ottenere valori di produttività di biomassa comparabili a quelli ottenuti in presenza di glicerolo puro. I risultati ottenuti hanno suggerito che la coltivazione mixotrofica può costituire una valida alternativa, accoppiando la produzione di biomassa e lipidi al simultaneo consumo di un sottoprodotto, migliorando quindi la fattibilità del processo e diminuendo i costi di produzione. Al fine di valutare le potenzialità della diatomea nella mitigazione delle emissioni di CO2 accoppiata con la produzione di biodiesel, si è testata la sua coltivazione in presenza di concentrazioni crescenti di CO2. I risultati ottenuti hanno mostrato che le culture insufflate con 1 e 5% di CO2 mostravano simili e più elevati valori di produttività di biomassa (44 e 48 mgAFDWL-1d-1) e contenuto di lipidi (2 volte superiore) rispetto alle colture insufflate con sola aria (0.04%) (26 mgAFDWL-1d-1). Questo studio suggerisce che la diatomea è in grado di crescere ad elevate concentrazioni di CO2 e al tempo stesso accumulare lipidi utili per la produzione di biodiesel. Infine, nel quinto capitolo è stata valutata la possibilità di utilizzare l’alga verde C. vulgaris come possibile biofertilizzante su piante di pisello (Pisum sativum L. var. Paladio nano). I risultati ottenuti hanno evidenziato che in seguito all'applicazione dell’alga come biofertilizzante, le piante di pisello aumentavano tutti i parametri di crescita misurati e in particolar modo la resa in biomassa (più del 70% del peso secco rispetto il controllo). Questo studio suggerisce che le microalghe possono essere costituire una valida alternativa ai fertilizzanti chimici da impiegare in un’agricoltura più sostenibile.

The potential role of some microalgae in biotechnological fields

SABIA, Alessandra
2016

Abstract

The aim of this Thesis entitled “The potential role of some microalgae in biotechnological fields” is to gain further knowledge on the morpho-physiological and biochemical aspects of some microalgae known to be used for biotechnological applications, in order to improve their growth performance, photosynthetic efficiency and biomass composition in the perspective of their exploitation on a large scale cultivation. The topics of this Thesis are organized and subdivided in five chapters. The Chapter 1 is a general introduction on algal biology and biotechnological applications of microalgae in large-scale cultivation. The Chapter 2 is a study on the scaling-up of the cultivation and on the recycling of growth media for the re-cultivation of the green microalgae Neochloris oleoabundans, with the aim of gaining further knowledge on the potential behaviour of this algal strain in 20-L coaxial photobioreactors (PBR). In the first section, it has been demonstrated that the alga can efficiently achieved higher biomass productivity (0.28 gL-1d-1) when it was cultivated mixotrophically in brackish media in the presence of 2.5 gL-1 of glucose as compared to the autotrophic conditions (0.02 gL-1d-1). In addition, the mixotrophic cultivation had a strong impact on photosynthetic activity and lipid content of the alga. In the second section, it has been showed that N. oleoabundans can efficiently grow in its recycling autotrophic and mixotrophic growth media obtained from its previous cultivations in a 20-L PBR. The promotion of growth of the alga was attributed to polyamines, while the alteration of the photosynthetic apparatus is caused by the presence of free fatty acids. This study confirmed that mixotrophic cultivation is a valid and very efficient strategy, allowing to obtain the best compromise between biomass production and lipid accumulation in the scaling-up of the alga. In addition, it has also demonstrated that the recycling of growth media can be efficiently considered a suitable solution in order to reduce the cultivation costs, and the same time providing a more sustainable ecological impact on water resources. The Chapter 3 concerns a comparative study on growth performances, photosynthetic parameters, with special attention to protein content and profile of four Chlorophyta species belonging to the algal classes Chlorophyceae (Neochloris oleoabundans and Scenedesmus acutus) and Trebouxiophyceae (Chlorella vulgaris and Chlorella protothecoides) cultivated under identical culture conditions. In addition to these analyses, SDS-PAGE and Blue-native-PAGE in second dimension electrophoresis were performed with the aim to investigate if some 2 differences occurred in the organisation and assembly of the resolved thylakoid complexes of the four green algae. The results have highlighted the metabolic uniqueness of each strain, resulting in a non-obvious comparison with other species, even the most related ones. Interestingly, S. acutus resulted to be the most promising species to use for several biotechnological applications, since it had showed high capability to accumulate a large amount of proteins (53.2 %DW) and photosynthetic pigment content, which is also accompanied by a more abundant thylakoid protein complexes profile as compared to all the other species. In Chapter 4, two different cultivation strategies were tested for enhancing the biomass productivity and lipid content in the marine diatom Thalassiosira pseudonana with the aim of gaining further knowledge on its biotechnological potential use in the bioenergetics field. In the first section, the diatom was cultivated autotrophically and mixotrophically under different organic carbon source and with the supply of a low-cost carbon source. In the preliminary experiment, results showed that the diatom grown mixotrophically in the presence of 2.5 gL-1 of pure glycerol achieved high biomass concentration (0.5 gDWL-1) and lipid content (6 times higher) as compared to the autotrophic condition (0.3 gDWL-1) and other carbon sources tested. It is worth noting that, in the following experiment, the cultivation of the diatom in the presence of 2.5 gL-1 of crude glycerol, one of the major byproducts of the biodiesel production, allow to achieved similar and high value of biomass productivity of that obtained with the supply of pure glycerol. This could make mixotrophy economically advantageous, especially in the context of a biorefinery approach. In the second section, the diatom T. pseudonana was cultivated in the presence of increasing CO2 concentration with special attention to lipid accumulation. Present results clearly indicated that the diatom cultures grown at 1 and 5% CO2 presented similar and higher biomass productivity (44 and 48 mgAFDWL-1d-1) than air grown cultures (26 mgAFDWL-1d-1). Moreover, lipid content, as revealed by the lipid-specific fluorochrome Nile Red, was 2 times higher in cultures enriched with CO2 than in air grown cultures. The results on the diatom T. pseudonana have clearly demonstrated that this species has a great potential for mitigating CO2 emission coupled with the accumulation of lipids suitable for biodiesel production. Finally in Chapter 5, it has been demonstrated that the application of C. vulgaris as biofertilizer for pea plants (Pisum sativum L. var. Paladio nano) clearly led to an increase in plant growth (leaf area 40% bigger than controls) and yield (more than 70% of DW with respect to the control) of treated-plants. The use of microalgae could be an eco-friendly alternative to chemical fertilizers to be exploited in sustainable agriculture.
PANCALDI, Simonetta
BARBUJANI, Guido
File in questo prodotto:
File Dimensione Formato  
PhD_thesis_Sabia.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 16.66 MB
Formato Adobe PDF
16.66 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2403397
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact