We develop real Paley-Wiener theorems for classes Sω of ultradifferentiable functions and related Lp-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given.
Real Paley-Wiener theorems in spaces of ultradifferentiable functions
Chiara Boiti
Primo
;
2020
Abstract
We develop real Paley-Wiener theorems for classes Sω of ultradifferentiable functions and related Lp-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BJO-JFA.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
629.38 kB
Formato
Adobe PDF
|
629.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1902.02745.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
402.79 kB
Formato
Adobe PDF
|
402.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.