The present investigation concerns the production and characterization of monoolein-water systems designed for cutaneous administration of crocetin. The different monoolein crystalline phases forming in the presence of crocetin as a function of added water have been investigated by x-ray and polarized light microscopy. Franz cell was employed to compare in vitro the crocetin diffusion from selected monoolein water systems containing 95, 90 or 75% w/w of monoolein, while to investigate the performance of monoolein-water as transdermal delivery systems, in vivo studies, based on tape stripping were performed. The presence of micellar, lamellar and Q230 phases was found in the case of systems containing monoolein 95, 90 and 75% w/w respectively, with a viscosity almost directly proportional to the amount of added water. The higher the amount of water, the longer the crocetin stability, while its diffusion was slower in the case of more viscous systems. Tape stripping results indicated a more rapid depletion of crocetin on stratum corneum in the case of systems characterized by cubic phases, followed by micellar and lamellar ones. This behaviour could be related to a more rapid drug penetration throughout the deeper skin strata.

Monoolein liquid crystalline phases for topical delivery of crocetin

E. Esposito
Primo
;
R. Cortesi
;
2018

Abstract

The present investigation concerns the production and characterization of monoolein-water systems designed for cutaneous administration of crocetin. The different monoolein crystalline phases forming in the presence of crocetin as a function of added water have been investigated by x-ray and polarized light microscopy. Franz cell was employed to compare in vitro the crocetin diffusion from selected monoolein water systems containing 95, 90 or 75% w/w of monoolein, while to investigate the performance of monoolein-water as transdermal delivery systems, in vivo studies, based on tape stripping were performed. The presence of micellar, lamellar and Q230 phases was found in the case of systems containing monoolein 95, 90 and 75% w/w respectively, with a viscosity almost directly proportional to the amount of added water. The higher the amount of water, the longer the crocetin stability, while its diffusion was slower in the case of more viscous systems. Tape stripping results indicated a more rapid depletion of crocetin on stratum corneum in the case of systems characterized by cubic phases, followed by micellar and lamellar ones. This behaviour could be related to a more rapid drug penetration throughout the deeper skin strata.
2018
Esposito, E.; Carducci, F.; Mariani, P.; Huang, N.; Simelière, F.; Cortesi, R.; Romeo, G.; Puglia, C.
File in questo prodotto:
File Dimensione Formato  
monoolein liquid crystralline phases.2018.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11392_2395064_preprint_Esposito_Elisabetta.pdf

accesso aperto

Descrizione: versione preprint
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2395064
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact