In this work the durability assessment and the permanent deformation of a copper mold for continuous casting of steel have been investigated using mathematical models based on the Finite Element method. The cyclic plasticity behavior of the material is represented by a combined kinematic-isotropic model experimentally validated. Results from thermo-mechanical analysis are in good agreement with measurements. In particular, creep effects included into the model permit the evolution of bulging near the meniscus area to be correctly predicted. A life estimation is performed considering strain-life and stress-rupture time curves according to a cumulative damage law.
Copper mold for continuous casting of steel: Modelling strategies to assess thermal distortion and durability
Benasciutti, D.Penultimo
;
2017
Abstract
In this work the durability assessment and the permanent deformation of a copper mold for continuous casting of steel have been investigated using mathematical models based on the Finite Element method. The cyclic plasticity behavior of the material is represented by a combined kinematic-isotropic model experimentally validated. Results from thermo-mechanical analysis are in good agreement with measurements. In particular, creep effects included into the model permit the evolution of bulging near the meniscus area to be correctly predicted. A life estimation is performed considering strain-life and stress-rupture time curves according to a cumulative damage law.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.