We prove that a finite-dimensional Hopf algebra with the dual Cheval-ley Property over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in meaningful examples where the diagram is a Nichols algebra.

Cohomology and coquasi-bialgebras in the category of Yetter-Drinfeld modules

Ardizzoni, Alessandro;Menini, Claudia
2017

Abstract

We prove that a finite-dimensional Hopf algebra with the dual Cheval-ley Property over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in meaningful examples where the diagram is a Nichols algebra.
2017
Angiono, Ivã¡n; Ardizzoni, Alessandro; Menini, Claudia
File in questo prodotto:
File Dimensione Formato  
39-CohomCoquasiYD.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: DRM non definito
Dimensione 947.38 kB
Formato Adobe PDF
947.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1509.04844.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 401.96 kB
Formato Adobe PDF
401.96 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2380021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact