We prove that a finite-dimensional Hopf algebra with the dual Cheval-ley Property over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in meaningful examples where the diagram is a Nichols algebra.
Cohomology and coquasi-bialgebras in the category of Yetter-Drinfeld modules
Ardizzoni, Alessandro;Menini, Claudia
2017
Abstract
We prove that a finite-dimensional Hopf algebra with the dual Cheval-ley Property over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in meaningful examples where the diagram is a Nichols algebra.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
39-CohomCoquasiYD.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
DRM non definito
Dimensione
947.38 kB
Formato
Adobe PDF
|
947.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1509.04844.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
401.96 kB
Formato
Adobe PDF
|
401.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.