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COHOMOLOGY AND COQUASI-BIALGEBRAS IN THE CATEGORY OF

YETTER-DRINFELD MODULES

IVÁN ANGIONO, ALESSANDRO ARDIZZONI, AND CLAUDIA MENINI

Abstract. We prove that a finite-dimensional Hopf algebra with the dual Chevalley Property
over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever
the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram
with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in
meaningful examples where the diagram is a Nichols algebra.
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Introduction

Let A be a finite-dimensional Hopf algebra over a field k of characteristic zero such that the
coradical H of A is a sub-Hopf algebra (i.e. A has the dual Chevalley Property). Denote by
D (A) the diagram of A. The main aim of this paper (see Theorem 5.6) is to prove that, if the
third Hochschild cohomology group in H

HYD of the algebra D (A) with coefficients in k vanishes, in
symbols H3

YD (D (A) , k) = 0, then A is quasi-isomorphic to the Radford-Majid bosonization E#H

of some connected bialgebra E in H
HYD with gr (E) ∼= D (A) as bialgebras in H

HYD.
The paper is organized as follows. Let H be a Hopf algebra over a field k. In Section 1 we

investigate the properties of coalgebras with multiplication and unit in the category H
HYD (in

particular of coquasi-bialgebras) and their associated graded coalgebra. The main result of this
section, Theorem 1.5, establishes that the associated graded coalgebra grQ of a connected coquasi-
bialgebra in H

HYD is a connected bialgebra in H
HYD.
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In Section 2 we study the deformation of coquasi-bialgebras in H
HYD by means of gauge trans-

formations. In Proposition 2.5 we investigate its behaviour with respect to bosonization while in
Proposition 2.6 with respect to the associated graded coalgebra.

In Section 3 we consider the associated graded coalgebra in case the Hopf algebraH is semisimple
and cosemisimple (e.g. H is finite-dimensional cosemisimple over a field of characteristic zero). In
particular, in Theorem 3.2, we prove that a f.d. connected coquasi-bialgebra Q in H

HYD is gauge
equivalent to a connected bialgebra in H

HYD whenever H3
YD (grQ, k) = 0. This result is inspired

by [EG, Proposition 2.3].
In Section 4, we focus on the link between Hn

YD (B, k) and the invariants of Hn (B, k), where B is
a bialgebra in Hn

YD (B, k). In particular, in Proposition 4.7 we show that Hn
YD (B, k) is isomorphic

to Hn (B, k)
D(H)

, which is a subspace of Hn (B, k)
H ∼= Hn (B#H, k) , see Corollary 4.3.

Section 5 is devoted to the proof of the main result of the paper, the aforementioned Theorem
5.6.

In Section 6 we provide examples where Hn
YD (B, k) = 0 in case B is the Nichols algebra B(V ) of

a Yetter-Drinfeld module V . In particular we show that that H3
YD (B(V ), k) can be zero although

H3 (B(V )#H, k) is non-trivial.

Preliminaries

Given a category C and objectsM,N ∈ C, the notation C (M,N) stands for the set of morphisms
in C. This notation will be mainly applied to the case C is the category of vector space Veck over
a field k or C is the category of Yetter-Drinfeld modules H

HYD over a Hopf algebra H . The set of
natural numbers including 0 is denoted by N0 while N denotes the same set without 0.

1. Yetter-Drinfeld

Definition 1.1. Let C be a coalgebra. Denote by Cn the n-th term of the coradical filtration of
C and set C−1 := 0. For every x ∈ C, we set

|x| := min {i ∈ N0 : x ∈ Ci} and x := x+ C|x|−1.

Note that, for x = 0, we have |x| = 0. One can define the associated graded coalgebra

grC := ⊕i∈N0

Ci

Ci−1

with structure given, for every x ∈ C, by

∆grC (x) =
∑

0≤i≤|x|
(x1 + Ci−1)⊗

(
x2 + C|x|−i−1

)
,(1)

εgrC (x) = δ|x|,0εC (x) .(2)

1.2. For every i ∈ N0, take a basis
{
xi,j | j ∈ Bi

}
of the k-module Ci/Ci−1 with xi,j 6= xi,l for

j 6= l and ∣∣xi,j
∣∣ = i.

Then
{
xi,j | 0 ≤ i ≤ n, j ∈ Bi

}
is a basis of Cn and

{
xi,j | i ∈ N0, j ∈ Bi

}
is a basis of C. Assume

that C has a distinguished grouplike element 1 = 1C 6= 0 and take i > 0. If ε
(
xi,j
)
6= 0 then we

have that

xi,j − ε (xi,j) 1 = xi,j

so that we can take xi,j − ε
(
xi,j
)
1 in place of xi,j . In other words we can assume

(3) ε
(
xi,j
)
= 0, for every i > 0, j ∈ Bi.

It is well-known there is a k-linear isomorphism ϕ : C → grC defined on the basis by ϕ
(
xi,j
)
:= xi,j .

We compute

εgrCϕ
(
xi,j
)
= εgrC

(
xi,j
)

(2)
= δi,0ε

(
x0,j

) (3)
= ε

(
xi,j
)
.
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Hence we obtain

(4) εgrC ◦ ϕ = ε.

Let H be a Hopf algebra. A coalgebra with multiplication and unit in H
HYD is a datum

(Q,m, u,∆, ε) where (Q,∆, ε) is a coalgebra in H
HYD, m : Q ⊗ Q → Q is a coalgebra morphism

in H
HYD called multiplication (which may fail to be associative) and u : k → Q is a coalgebra

morphism in H
HYD called unit. In this case we set 1Q := u (1k) .

Note that, for every h ∈ H, k ∈ k, we have

h1Q = hu (1k) = u (h1k) = u (εH (h) 1k) = εH (h)u (1k) = εH (h) 1Q,(5)

(1Q)−1 ⊗ (1Q)0 = (u (1k))−1 ⊗ (u (1k))0 = (1k)−1 ⊗ u ((1k)0) = 1H ⊗ u (1k) = 1H ⊗ 1Q.(6)

Proposition 1.3. Let H be a Hopf algebra and let (Q,m, u,∆, ε) be a coalgebra with multiplication
and unit in H

HYD. If Q0 is a subcoalgebra of Q in H
HYD such that Q0 · Q0 ⊆ Q0, then Qn is a

subcoalgebra of Q in H
HYD for every n ∈ N0. Moreover Qa ·Qb ⊆ Qa+b for every a, b ∈ N0 and the

graded coalgebra grQ, associated with the coradical filtration of Q, is a coalgebra with multiplication
and unit in H

HYD with respect to the usual coalgebra structure and with multiplication and unit
defined by

mgrQ ((x+Qa−1)⊗ (y +Qb−1)) : = xy +Qa+b−1,(7)

ugrQ (k) : = k1Q +Q−1

Proof. The coalgebra structure of Q induces a coalgebra structure on grQ. Since Q0 is a subcoal-
gebra of Q in H

HYD and, for n ≥ 1, one has Qn = Qn−1∧QQ0, then inductively one proves that Qn

is a subcoalgebra of Q in H
HYD. As a consequence one gets that grQ is a coalgebra in H

HYD (this
construction can be performed in the setting of monoidal categories under suitable assumptions,
see e.g. [AM, Theorem 2.10]). Let us prove that grQ inherits also a multiplication and unit. Let
us check that Qa ·Qb ⊆ Qa+b for every a, b ∈ N0. We proceed by induction on n = a+ b. If n = 0
there is nothing to prove. Let n ≥ 1 and assume that Qi · Qj ⊆ Qi+j for every i, j ∈ N0 such
that 0 ≤ i + j ≤ n − 1. Let a, b ∈ N0 be such that n = a + b. Since ∆ (Qa) ⊆

∑a
i=0Qi ⊗ Qa−i

and cQ,Q (Qu ⊗Qv) ⊆ Qv ⊗Qu, where cQ,Q denotes the braiding in H
HYD, using the compatibility

condition between ∆ and m, one easily gets that ∆ (Qa ·Qb) ⊆ Qa+b−1 ⊗Q+Q⊗Q0.
Therefore Qa ·Qb ⊆ Qa+b. This property implies we have a well-defined map in H

HYD

ma,b
grQ :

Qa

Qa−1
⊗

Qb

Qb−1
→

Qa+b

Qa+b−1

defined, for x ∈ Qa and y ∈ Qb, by (7). This can be seen as the graded component of a morphism
in H

HYD that we denote by mgrQ : grQ ⊗ grQ → grQ. Let us check that mgrQ is a coalgebra
morphism in H

HYD. Consider a basis of Q with terms of the form xi,j as in 1.2. Hence we can
write the comultiplication in the form

∆(xa,u) =
∑

s+t≤a

∑
l,m

ηa,us,t,l,mx
s,l ⊗ xt,m.

Now, using (1), one gets that

(8) ∆grQ (xa,u) =
∑

0≤i≤a

∑
l,m

ηa,ui,a−i,l,mx
i,l ⊗ xa−i,m.

Using that ∆grQ⊗grQ = (grQ⊗ cgrQ,grQ ⊗ grQ) (∆grQ ⊗∆grQ) and (8), it is straightforward to

check that (mgrQ ⊗mgrQ)∆grQ⊗grQ

(
xa,u ⊗ xb,v

)
= ∆grQmgrQ

(
xa,u ⊗ xb,v

)
.

Moreover, since εgrQ⊗grQ = εgrQ⊗εgrQ, we get that εgrQmgrQ

(
xa,u ⊗ xb,v

)
= εgrQ⊗grQ

(
xa,u ⊗ xb,v

)
.

This proves that mgrQ is a coalgebra morphism in H
HYD.

The fact that ugrQ : k → grQ, defined by ugrQ (k) := k1Q + Q−1 is a coalgebra morphism in
H
HYD easily follows by means of (5) and (6).

�
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Definition 1.4 ([ABM, Definition 5.2]). Let H be a Hopf algebra. Recall that a coquasi-bialgebra
(Q,m, u,∆, ε, α) in the pre-braided monoidal category H

HYD is a coalgebra (Q,∆, ε) in H
HYD to-

gether with coalgebra homomorphisms m : Q⊗Q→ Q and u : k → Q in H
HYD and a convolution

invertible element α ∈ H
HYD

(
Q⊗3, k

)
(braided reassociator) such that

α (Q⊗Q⊗m) ∗ α (m⊗Q⊗Q) = (ε⊗ α) ∗ α (Q⊗m⊗Q) ∗ (α⊗ ε) ,(9)

α (Q⊗ u⊗Q) = α (u⊗Q⊗Q) = α (Q ⊗Q⊗ u) = εQ⊗Q,(10)

m (Q ⊗m) ∗ α = α ∗m (m⊗Q) ,(11)

m (u⊗Q) = IdQ = m (Q⊗ u) .(12)

Here ∗ denotes the convolution product, where Q⊗3 is the tensor product of coalgebras in H
HYD

whence it depends on the braiding of this category. Note that in (10) any of the three equalities
such as α (u⊗Q⊗Q) = εQ⊗Q implies that α is unital.

Theorem 1.5. Let H be a Hopf algebra and let (Q,m, u,∆, ε, ω) be a connected coquasi-bialgebra
in H

HYD. Then grQ is a connected bialgebra in H
HYD.

Proof. By Proposition 1.3, we know that grQ is a coalgebra with multiplication and unit in H
HYD.

We have to check that the multiplication is associative and unitary.
Given two coalgebrasD,E in H

HYD endowed with coalgebras filtration
(
D(n)

)
n∈N0

and
(
E(n)

)
n∈N0

in H
HYD such thatD(0) and E(0) are one-dimensional, let us check that C(n) :=

∑
0≤i≤nD(i)⊗E(n−i)

gives a coalgebra filtration on C := D ⊗ E in H
HYD. First note that the coalgebra structure of C

depends on the braiding. Thus, we have

∆C

(
C(n)

)
= (D ⊗ cD,E ⊗ E) (∆D ⊗∆E)

(∑n

i=0
D(i) ⊗ E(n−i)

)

⊆ (D ⊗ cD,E ⊗ E)

(∑n

i=0

∑i

a=0

∑n−i

b=0
D(a) ⊗D(i−a) ⊗ E(b) ⊗ E(n−i−b)

)

⊆
∑n

i=0

∑i

a=0

∑n−i

b=0
D(a) ⊗ cD,E

(
D(i−a) ⊗ E(b)

)
⊗ E(n−i−b)

⊆
∑n

i=0

∑i

a=0

∑n−i

b=0
D(a) ⊗ cD(i−a),E(b)

(
D(i−a) ⊗ E(b)

)
⊗ E(n−i−b)

⊆
∑n

i=0

∑i

a=0

∑n−i

b=0
D(a) ⊗ E(b) ⊗D(i−a) ⊗ E(n−i−b)

⊆
∑n

i=0

∑n

w=0

∑
0≤a≤i,

0≤b≤n−i
a+b=w

D(a) ⊗ E(b) ⊗D(i−a) ⊗ E(n−i−b)

⊆
∑n

w=0
C(w) ⊗ C(n−w).

Moreover, by [Sw, Proposition 11.1.1], we have that the coradical of C is contained inD(0)⊗E(0) and
hence it is one-dimensional.

This argument can be used to produce a coalgebra filtration on C := Q ⊗ Q ⊗ Q using as a
filtration on Q the coradical filtration. Let n > 0 and let w ∈ C(n) =

∑
i+j+k≤n Qi ⊗Qj ⊗Qk. By

[AMS1, Lemma 3.69], we have that

∆C (w) − w ⊗ (1Q)
⊗3 − (1Q)

⊗3 ⊗ w ∈ C(n−1) ⊗ C(n−1).

Thus we get

w1 ⊗ w2 ⊗ w3 −∆C (w)⊗ (1Q)
⊗3

−∆C

(
(1Q)

⊗3
)
⊗ w ∈ ∆C

(
C(n−1)

)
⊗ C(n−1)

and hence, tensoring the first relation by (1Q)
⊗3

on the right and adding it to the second one, we
get

w1⊗w2⊗w3−w⊗(1Q)
⊗3

⊗(1Q)
⊗3

−(1Q)
⊗3

⊗w⊗(1Q)
⊗3

−(1Q)
⊗6

⊗w ∈ C(n−1)⊗C(n−1)⊗C(n−1).

For shortness, we set νn (z) := m (Q⊗m) (z) +Qn−1 for every z ∈ C. Thus, by applying to the
last displayed relation C(n−1) ⊗m (Q⊗m)⊗ C(n−1) and factoring out the middle term by Qn−1,
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we get

 w1 ⊗ νn (w2)⊗ w3 − w ⊗ νn

(
(1Q)

⊗3
)
⊗ (1Q)

⊗3
+

− (1Q)
⊗3 ⊗ νn (w) ⊗ (1Q)

⊗3 − (1Q)
⊗3 ⊗ νn

(
(1Q)

⊗3
)
⊗ w




∈ C(n−1) ⊗

(
νn
(
C(n−1)

)

Qn−1

)
⊗ C(n−1) ⊆ C(n−1) ⊗

Qn−1

Qn−1
⊗ C(n−1) = 0.

Thus we can express the first term with respect to the remaining ones as follows

w1 ⊗ νn (w2)⊗ w3

= w ⊗ νn

(
(1Q)

⊗3
)
⊗ (1Q)

⊗3
+ (1Q)

⊗3
⊗ νn (w)⊗ (1Q)

⊗3
+ (1Q)

⊗3
⊗ νn

(
(1Q)

⊗3
)
⊗ w

= w ⊗ (1Q +Qn−1)⊗ (1Q)
⊗3

+ (1Q)
⊗3

⊗ νn (w) ⊗ (1Q)
⊗3

+ (1Q)
⊗3

⊗ (1Q +Qn−1)⊗ w
n>0
= (1Q)

⊗3
⊗ νn (w)⊗ (1Q)

⊗3
.

We have so proved that for n > 0 and w ∈ C(n)

(13) w1 ⊗ νn (w2)⊗ w3 = (1Q)
⊗3

⊗ νn (w) ⊗ (1Q)
⊗3
.

The same equation trivially holds also in the case n = 0 as C(n) is one-dimensional.
Let x, y, z ∈ Q. Then x⊗ y ⊗ z ∈ C(|x|+|y|+|z|) so that

(x · y) · z =
((
x+Q|x|−1

)
·
(
y +Q|y|−1

))
·
(
z +Q|z|−1

)

=
(
(xy) +Q|x|+|y|−1

)
·
(
z +Q|z|−1

)

= (xy) z +Q|x|+|y|+|z|−1

= ω−1 ((x⊗ y ⊗ z)1) ν|x|+|y|+|z| ((x⊗ y ⊗ z)2)ω ((x⊗ y ⊗ z)3)

(13)
= ω−1 (1Q ⊗ 1Q ⊗ 1Q) ν |x|+|y|+|z| (x⊗ y ⊗ z)ω (1Q ⊗ 1Q ⊗ 1Q)

= ν|x|+|y|+|z| (x⊗ y ⊗ z)

= x (yz) +Q|x|+|y|+|z|−1 = x · (y · z) .

Therefore the multiplication is associative. It is also unitary as

x · 1Q =
(
x+Q|x|−1

)
· (1Q +Q−1) = x · 1Q +Q|x|−1 = x+Q|x|−1 = x

and similarly 1Q · x = x for every x ∈ Q. �

2. Gauge deformation

Definition 2.1. Let H be a Hopf algebra and let (Q,m, u,∆, ε, ω) be a coquasi-bialgebra in H
HYD.

A gauge transformation for Q is a morphism γ : Q ⊗ Q → k in H
HYD which is convolution

invertible in H
HYD and which is also unitary on both entries.

Remark 2.2. For γ as above, let us check that γ−1 is unitary whence a gauge transformation too.
First note that for all x ∈ Q, by means of (6) and (5), one gets

(1Q ⊗ x)1 ⊗ (1Q ⊗ x)2 = 1Q ⊗ x1 ⊗ 1Q ⊗ x2(14)

(x⊗ 1Q)1 ⊗ (x⊗ 1Q)2 = x1 ⊗ 1Q ⊗ x2 ⊗ 1Q(15)

Thus

γ−1 (1Q ⊗ x) = γ−1 (1Q ⊗ x1) ε (x2) = γ−1 (1Q ⊗ x1) γ (1Q ⊗ x2) =
(
γ−1 ∗ γ

)
(1Q ⊗ x) = ε (x)

and similarly γ−1 (x⊗ 1Q) = ε (x) .

Lemma 2.3. Let H be a Hopf algebra and let C be a coalgebra in H
HYD. Given a map γ ∈

H
HYD (C, k) , we have that γ is convolution invertible in H

HYD (C, k) if and only if it is convolution
invertible in Veck (C, k). Moreover the inverse is the same.
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Proof. Assume there is a k-linear map γ−1 : C → k which is a convolution inverse of γ in
Veck (C, k). By [ABM1, Remark 2.4(ii)], γ−1 is left H-linear. Let us check that γ−1 is left
H-colinear:

c−1 ⊗ γ−1 (c0) = (c1)−1 1H ⊗ γ−1 ((c1)0) γ (c2) γ
−1 (c3)

= (c1)−1 (c2)−1 ⊗ γ−1 ((c1)0) γ ((c2)0) γ
−1 (c3)

(∗)
= (c1)−1 ⊗ γ−1

(
((c1)0)1

)
γ
(
((c1)0)2

)
γ−1 (c2)

= (c1)−1 ⊗
(
γ−1 ∗ γ

)
((c1)0) γ

−1 (c2)

= (c1)−1 ⊗ εC ((c1)0) γ
−1 (c2)

(∗)
= 1H ⊗ εC (c1) γ

−1 (c2) = 1H ⊗ γ−1 (c)

where in (*) we used that the comultiplication or the counit of C is left H-colinear. Thus γ is
convolution invertible in H

HYD (C, k). The other implication is obvious. �

Proposition 2.4. Let H be a Hopf algebra and let (Q,m, u,∆, ε, ω) be a coquasi-bialgebra in H
HYD.

Let γ : Q⊗Q→ k be a gauge transformation in H
HYD. Then

Qγ := (Q,mγ , u,∆, ε, ωγ)

is a coquasi-bialgebra in H
HYD, where

mγ := γ ∗m ∗ γ−1

ωγ := (ε⊗ γ) ∗ γ (Q⊗m) ∗ ω ∗ γ−1 (m⊗Q) ∗
(
γ−1 ⊗ ε

)
.

Proof. The proof is analogue to [K, Proposition XV.3.2] in its dual version. We include some
details for the reader’s sake. Note that Qγ has the same underlying coalgebra of Q which is a
coalgebra in H

HYD. The unit is also the same and hence it is a coalgebra map in H
HYD. Since mγ

is the convolution product of morphisms in H
HYD, it results that mγ is in H

HYD as well.
Since m is a coalgebra map in H

HYD and γ is convolution invertible with convolution inverse
γ−1, it follows that mγ is a coalgebra map in H

HYD.
By means of (14) and (15), one gets that mγ (1Q ⊗ x) = x = mγ (x⊗ 1Q) .
Let us consider now ωγ . Since it is the convolution product of morphisms in H

HYD, it results
that ωγ is in H

HYD as well.
Let us check that ωγ is unitary. Consider the map α2 : Q ⊗ Q → Q ⊗ Q ⊗ Q defined by

α2 (x⊗ y) = x⊗ 1Q ⊗ y. The equalities (15) and (6) yield

(α2 (x⊗ y))1 ⊗ (α2 (x⊗ y))2 = α2

(
x1 ⊗ (x2)−1 y1

)
⊗ α2 ((x2)0 ⊗ y2)

= α2 ((x⊗ y)1)⊗ α2 ((x⊗ y)2)

so that α2 is comultiplicative.
Thus

ωγα2 := (ε⊗ γ)α2 ∗ γ (Q⊗m)α2 ∗ ωα2 ∗ γ
−1 (m⊗Q)α2 ∗

(
γ−1 ⊗ ε

)
α2

and computing the factors of this convolution products one gets

(ε⊗ γ)α2 = ε⊗ ε, γ (Q⊗m)α2 = γ, ωα2 = ε⊗ ε,

γ−1 (m⊗Q)α2 = γ−1,
(
γ−1 ⊗ ε

)
α2 = ε⊗ ε

and hence ωγα2 = γ ∗ γ−1 = ε ⊗ ε, which means that ωγ (x⊗ 1Q ⊗ y) = ε (x) ε (y) for every
x, y ∈ Q.

Similarly, considering α1 : Q⊗Q→ Q⊗Q⊗Q defined by α2 (x⊗ y) = 1Q⊗x⊗y, one proves that
ωγ (1Q ⊗ x⊗ y) = ε (x) ε (y) . A symmetric argument shows that ωγ (x⊗ y ⊗ 1Q) = ε (x) ε (y) .

Note that, by Lemma 2.3, ωγ is convolution invertible in H
HYD (D, k) as it is convolution invert-

ible in Veck (D, k).
Let us check that the multiplication is quasi-associative. By [ABM, Lemma 2.10 formula (2.7)],

we have

mγ
(
Q⊗ γ ∗m ∗ γ−1

)
= (ε⊗ γ) ∗mγ (Q⊗m) ∗

(
ε⊗ γ−1

)
,
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(
ε⊗ γ−1

)
∗ (ε⊗ γ) = ε⊗

(
γ−1 ∗ γ

)
= ε⊗ ε⊗ ε,

mγ (mγ ⊗Q) = mγ
(
γ ∗m ∗ γ−1 ⊗Q

)
= (γ ⊗ ε) ∗mγ

(
m ∗ γ−1 ⊗Q

)

= (γ ⊗ ε) ∗mγ (m⊗Q) ∗
(
γ−1 ⊗ ε

)
,

(
γ−1 ⊗ ε

)
∗ (γ ⊗ ε) =

((
γ−1 ∗ γ

)
⊗ ε
)
= ε⊗ ε⊗ ε.

By using these equalities one obtains

mγ (Q⊗mγ) ∗ ωγ = (ε⊗ γ) ∗ γ (Q⊗m) ∗m (Q⊗m) ∗ ω ∗ γ−1 (m⊗Q) ∗
(
γ−1 ⊗ ε

)
,

ωγ ∗mγ (mγ ⊗Q) = (ε⊗ γ) ∗ γ (Q⊗m) ∗ ω ∗m (m⊗Q) ∗ γ−1 (m⊗Q) ∗
(
γ−1 ⊗ ε

)

so that ωγ ∗mγ (mγ ⊗Q) = mγ (Q⊗mγ) ∗ ωγ .
It remains to check that ωγ is a reassociator. By [ABM, Lemma 2.10 formula (2.7)], we have

ωγ
(
Q⊗Q⊗ γ ∗m ∗ γ−1

)
= (ε⊗ ε⊗ γ) ∗ ωγ (Q⊗Q⊗m) ∗

(
ε⊗ ε⊗ γ−1

)
,

ωγ
(
γ ∗m ∗ γ−1 ⊗Q⊗Q

)
= (γ ⊗ ε⊗ ε) ∗ ωγ (m⊗Q⊗Q) ∗

(
γ−1 ⊗ ε⊗ ε

)
,

(γ ⊗ ε⊗ ε) ∗ (ε⊗ ε⊗ γ) = γ ⊗ γ = (ε⊗ ε⊗ γ) ∗ (γ ⊗ ε⊗ ε) .

By using these equalities one obtains

ωγ (Q⊗Q⊗mγ) ∗ ωγ (mγ ⊗Q⊗Q)

=




(ε⊗ ε⊗ γ) ∗ (ε⊗ γ (Q⊗m)) ∗ γ (Q⊗m (Q⊗m))
∗ω (Q⊗Q ⊗m) ∗ ω (m⊗Q⊗Q)

∗γ−1 (m (m⊗Q)⊗Q) ∗
(
γ−1 (m⊗Q)⊗ ε

)
∗
(
γ−1 ⊗ ε⊗ ε

)




and

(ε⊗ ωγ) ∗ ωγ (Q⊗mγ ⊗Q) ∗ (ωγ ⊗ ε)

=




(ε⊗ ε⊗ γ) ∗ (ε⊗ γ (Q⊗m)) ∗ γ (Q⊗m (Q⊗m))
∗ (ε⊗ ω) ∗ ω (Q⊗m⊗Q) ∗ (ω ⊗ ε)

∗γ−1 (m (m⊗Q)⊗Q) ∗
(
γ−1 (m⊗Q)⊗ ε

)
∗
(
γ−1 ⊗ ε⊗ ε

)


 .

Therefore

ωγ (Q⊗Q⊗mγ) ∗ ωγ (mγ ⊗Q⊗Q) = (ε⊗ ωγ) ∗ ωγ (Q ⊗mγ ⊗Q) ∗ (ωγ ⊗ ε) .

�

In analogy to the case of Hopf algebras, one can define the bosonization E#H of a coquasi-
bialgebra in H

HYD by a Hopf algebra H, see [ABM, Definition 5.4] for further details on the
structure. The following result was originally stated for E a Hopf algebra. Yorck Sommerhäuser
suggested the present more general form which investigates the behaviour of the bosonization under
a suitable gauge transformation.

Proposition 2.5. Let H be a Hopf algebra and let (E,m, u,∆, ε, ω) be a coquasi-bialgebra in H
HYD.

Let γ : E ⊗ E → k be a gauge transformation in H
HYD. Set

Γ : (E#H)⊗ (E#H) → k : (x#h) ⊗ (x′#h′) 7→ γ (x⊗ hx′) εH (h′) .

Then Γ is a gauge transformation and (E#H)
Γ
= Eγ#H as ordinary coquasi-bialgebras.

Proof. By [ABM, Lemma 2.15 and what follows], we have that Γ is convolution invertibleH-bilinear
and H-balanced. Moreover Γ−1 ((x#h)⊗ (x′#h′)) = γ−1 (x⊗ hx′) εH (h′) . If α : (E#H) ⊗
(E#H) → E#H is H-bilinear and H-balanced, it is easy to check that Γ ∗ α ∗ Γ−1 is H-bilinear
and H-balanced too.

In particular, since

mE#H ((x#h) ⊗ (x′#h′)) = m (x⊗ h1x
′)⊗ h2h

′

we have that mE#H is H-bilinear and H-balanced where E#H carries the left H-diagonal action
and the right regular action over H .
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Thus m(E#H)Γ = Γ ∗mE#H ∗ Γ−1 is H-bilinear and H-balanced. Moreover, since Eγ is also

a coquasi-bialgebra in H
HYD we have that mEγ#H : (E#H) ⊗ (E#H) → E#H is H-bilinear and

H-balanced too.
Therefore, in order to check that m(E#H)Γ = mEγ#H , it suffices to prove that they coincide on

elements of the form (x#1H)⊗ (x′#1H) .
Let us consider the multiplication

m(E#H)Γ ((x#1H)⊗ (x′#1H))

=
(
Γ ∗mE#H ∗ Γ−1

)
((x#1H)⊗ (x′#1H))

= Γ ((x#1H)1 ⊗ (x′#1H)1) ·mE#H ((x#1H)2 ⊗ (x′#1H)2) · Γ
−1 ((x#1H)3 ⊗ (x′#1H)3) .

Now, from

∆E#H (x#h) =
∑(

x(1)#x(2)〈−1〉h1

)
⊗
(
x(2)〈0〉#h2

)

we get

(x#1H)1 ⊗ (x#1H)2 ⊗ (x#1H)3

=
∑(

x(1)#x(2)〈−1〉x
(3)

〈−2〉

)
⊗
(
x(2)〈0〉#x

(3)
〈−1〉

)
⊗
(
x(3)〈0〉#1H

)

so that

m(E#H)Γ ((x#1H)⊗ (x′#1H))

= Γ ((x#1H)1 ⊗ (x′#1H)1) ·mE#H ((x#1H)2 ⊗ (x′#1H)2) · Γ
−1 ((x#1H)3 ⊗ (x′#1H)3)

=



∑

Γ
(
x(1)#x(2)〈−1〉x

(3)
〈−2〉 ⊗ x′(1)#x′(2)〈−1〉x

′(3)
〈−2〉

)

·mE#H

(
x(2)〈0〉#x

(3)
〈−1〉 ⊗ x′(2)〈0〉#x

′(3)
〈−1〉

)

·Γ−1
(
x(3)〈0〉#1H ⊗ x′(3)〈0〉#1H

)




=




∑
γ
(
x(1) ⊗ x(2)〈−1〉x

(3)
〈−2〉x

′(1)
)

·mE#H

(
x(2)〈0〉#x

(3)
〈−1〉 ⊗ x′(2)#x′(3)〈−1〉

)

·γ−1
(
x(3)〈0〉 ⊗ x′(3)〈0〉

)




=




∑
γ
(
x(1) ⊗ x(2)〈−1〉x

(3)
〈−2〉x

′(1)
)

·m
(
x(2)〈0〉 ⊗ x(3)〈−2〉x

′(2)
)
⊗ x(3)〈−1〉x

′(3)
〈−1〉

·γ−1
(
x(3)〈0〉 ⊗ x′(3)〈0〉

)




=




∑
γ
(
x(1) ⊗ x(2)〈−1〉x

(3)
〈−2〉x

′(1)
)

·m
(
x(2)〈0〉 ⊗ x(3)〈−1〉x

′(2)
)
⊗
(
x(3)〈0〉 ⊗ x′(3)

)
〈−1〉

·γ−1
(
x(3)〈0〉 ⊗ x′(3)〈0〉

)




γ−1 colin.
=

[ ∑
γ
(
x(1) ⊗ x(2)〈−1〉x

(3)
〈−2〉x

′(1)
)
·m
(
x(2)〈0〉 ⊗ x(3)〈−1〉x

′(2)
)
⊗ 1H

·γ−1
(
x(3)〈0〉 ⊗ x′(3)

)
]

=

[ ∑
γ
(
x(1) ⊗ x(2)〈−1〉x

(3)
〈−2〉x

′(1)
)
m
(
x(2)〈0〉 ⊗ x(3)〈−1〉x

′(2)
)

γ−1
(
x(3)〈0〉 ⊗ x′(3)

)
]
⊗ 1H .

Now we have
∑

(x⊗ y)
(1)

⊗ (x⊗ y)
(2)

=
∑

x(1) ⊗ x(2)〈−1〉y
(1) ⊗ x(2)〈0〉 ⊗ y(2)

so that

∑
(x⊗ y)

(1)
⊗ (x⊗ y)

(2)
⊗ (x⊗ y)

(3)

=
∑(

x(1) ⊗ x(2)〈−1〉x
(3)

〈−2〉y
(1)
)
⊗
(
x(2)〈0〉 ⊗ x(3)〈−1〉y

(2)
)
⊗
(
x(3)〈0〉 ⊗ y(3)

)
.

Using this equality we can proceed in our computation:

m(E#H)Γ ((x#1H)⊗ (x′#1H))
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=

[ ∑
γ
(
x(1) ⊗ x(2)〈−1〉x

(3)
〈−2〉x

′(1)
)

m
(
x(2)〈0〉 ⊗ x(3)〈−1〉x

′(2)
)
γ−1

(
x(3)〈0〉 ⊗ x′(3)

)
]
⊗ 1H

=
[∑

γ
(
(x⊗ x′)

(1)
)
·m
(
(x⊗ x′)

(2)
)
· γ−1

(
(x⊗ x′)

(3)
)]

#1H

=
(
γ ∗m ∗ γ−1

)
(x⊗ x′)#1H

= mEγ (x⊗ x′)#1H

= mEγ#H ((x#1H)⊗ (x′#1H)) .

Finally u(E#H)Γ = uE#H = 1E#1H = 1Eγ#1H = uEγ#H .

As a coalgebra (E#H)
Γ
coincides with E#H and hence with Eγ#H .

Finally let us check that ωEγ#H and ω(E#H)Γ coincide. To this aim, let us use the maps ℧∗
H,−

of [ABM, Lemma 2.15]. First note that ωEγ#H = ℧3
H,Eγ (ωEγ ) by [ABM, Proposition 5.3]. Now

ω(E#H)Γ = (εE#H ⊗ Γ) ∗ Γ (E#H ⊗mE#H) ∗ ωE#H ∗ Γ−1 (mE#H ⊗ E#H) ∗
(
Γ−1 ⊗ εE#H

)

=
(
℧

1
H,E (ε)⊗ ℧

2
H,E (γ)

)
∗ ℧2

H,E (γ) (E#H ⊗mE#H) ∗ ℧3
H,E (ω)

∗℧2
H,E

(
γ−1

)
(mE#H ⊗ E#H) ∗

(
℧

2
H,E

(
γ−1

)
⊗ ℧

1
H,E (ε)

)

One easily checks that

℧
1
H,E (ε)⊗ ℧

2
H,E (γ) = ℧

3
H,Eγ (ε⊗ γ) ,

℧
2
H,E (γ) (E#H ⊗mE#H) = ℧

3
H,Eγ (γ (E ⊗m)) ,

℧
2
H,E

(
γ−1

)
(mE#H ⊗ E#H) = ℧

3
H,Eγ

(
γ−1 (m⊗ E)

)
,

℧
2
H,E

(
γ−1

)
⊗ ℧

1
H,E (εE) = ℧

3
H,Eγ

(
γ−1 ⊗ ε

)
.

Thus we obtain

ω(E#H)Γ = ℧
3
H,Eγ (ε⊗ γ) ∗ ℧3

H,Eγ (γ (E ⊗m)) ∗ ℧3
H,E (ω) ∗ ℧3

H,Eγ

(
γ−1 (m⊗ E)

)
∗ ℧3

H,Eγ

(
γ−1 ⊗ ε

)

= ℧
3
H,Eγ

[
(ε⊗ γ) ∗ γ (E ⊗m) ∗ ω ∗ γ−1 (m⊗ E) ∗

(
γ−1 ⊗ ε

)]

= ℧
3
H,Eγ (ωEγ ) = ωEγ#H .

�

Proposition 2.6. Let H be a Hopf algebra and let (Q,m, u,∆, ε, ω) be a connected coquasi-
bialgebra in H

HYD. Let γ : Q ⊗ Q → k be a gauge transformation in H
HYD. Then gr (Qγ) and

gr (Q) coincide as bialgebras in H
HYD.

Proof. By Proposition 2.4, Qγ is a coquasi-bialgebra in H
HYD. It is obviously connected as it

coincides with Q as a coalgebra. By Theorem 1.5, both grQ and gr (Qγ) are connected bialgebras
in H

HYD. Let us check they coincide.
Note that, by Remark 2.2, we have that γ−1 is a gauge transformation, hence it is trivial on

k1Q ⊗ 1Q. Let C := Q ⊗ Q. Let n > 0 and let w ∈ C(n) =
∑

i+j≤nQi ⊗Qj . By [AMS1, Lemma

3.69], we have that ∆C (w)− w ⊗ (1Q)
⊗2

− (1Q)
⊗2

⊗ w ∈ C(n−1) ⊗ C(n−1). Thus we get

w1 ⊗ w2 ⊗ w3 −∆C (w)⊗ (1Q)
⊗2

−∆C

(
(1Q)

⊗2
)
⊗ w ∈ ∆C

(
C(n−1)

)
⊗ C(n−1)

and hence

w1⊗w2⊗w3−w⊗(1Q)
⊗2

⊗(1Q)
⊗2

−(1Q)
⊗2

⊗w⊗(1Q)
⊗2

−(1Q)
⊗4

⊗w ∈ C(n−1)⊗C(n−1)⊗C(n−1).

Since m
(
C(n−1)

)
⊆ Qn−1 we get

w1⊗m (w2)⊗w3−w⊗1Q⊗(1Q)
⊗2

−(1Q)
⊗2

⊗m (w)⊗(1Q)
⊗2

−(1Q)
⊗3

⊗w ∈ C(n−1)⊗Qn−1⊗C(n−1)

and hence

(16) w1 ⊗ (m (w2) +Qn−1)⊗ w3 = (1Q)
⊗2 ⊗ (m (w) +Qn−1)⊗ (1Q)

⊗2 .
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Let x, y ∈ Q. We compute

x ·γ y =
(
x+Q|x|−1

)
·γ
(
y +Q|y|−1

)

= (x ·γ y) +Q|x|+|y|−1

= γ ((x⊗ y)1)m ((x⊗ y)2) γ
−1 ((x⊗ y)3) +Q|x|+|y|−1

= γ ((x⊗ y)1)
(
m ((x⊗ y)2) +Q|x|+|y|−1

)
γ−1 ((x⊗ y)3)

(16)
= γ

(
(1Q)

⊗2
) (
m (x⊗ y) +Q|x|+|y|−1

)
γ−1

(
(1Q)

⊗2
)

= m (x⊗ y) +Q|x|+|y|−1 = (x · y) +Q|x|+|y|−1 = x · y.

Note that Qγ and Q have the same unit so that grQ and grQγ have. �

3. (Co)semisimple case

AssumeH is a semisimple and cosemisimple Hopf algebra (e.g. H is finite-dimensional cosemisim-
ple over a field of characteristic zero). Note that H is then separable (see e.g. [Stf, Corollary 3.7]
or [AMS1, Theorem 2.34]) whence finite-dimensional. Let (Q,m, u,∆, ε) be a f.d. coalgebra with
multiplication and unit in H

HYD. Assume that the coradical Q0 is a subcoalgebra of Q in H
HYD

such that Q0 ·Q0 ⊆ Q0. Let y
n,i with 1 ≤ i ≤ dim (Qn/Qn−1) be a basis for Qn/Qn−1. Consider,

for every n > 0, the exact sequence in H
HYD given by

0 // Qn−1
sn

// Qn
πn

//
Qn

Qn−1

// 0

Now, since H is semisimple and cosemisimple, by [Ra2, Proposition 7] the Drinfeld double D(H)
is semisimple. By a result essentially due to Majid (see [Mo, Proposition 10.6.16]) and by [RT,
Proposition 6], we get that the category H

HYD ∼= D(H)M is a semisimple category. Therefore

πn cosplits i.e. there is a morphism σn : (Qn/Qn−1) → Qn in H
HYD such that πnσn = Id. Let

un : k → Qn be the corestriction of the unit u : k → Q and let εn = ε|Qn
: Qn → k be the counit

of the subcoalgebra Qn. Set
σ′
n := σn − un ◦ εn ◦ σn

This is a morphism in H
HYD. Moreover

πn ◦ σ′
n = πn ◦ σn − πn ◦ un ◦ εn ◦ σn

n>0
= IdQn/Qn−1

− 0 = IdQn/Qn−1
,

εn ◦ σ′
n = εn ◦ σn − εn ◦ un ◦ εn ◦ σn = εn ◦ σn − εn ◦ σn = 0.

Therefore, without loss of generality we can assume that εn ◦ σn = 0. A standard argument on
split short exact sequences shows that there exists a morphism pn : Qn → Qn−1 in H

HYD such that
snpn + σnπn = IdQn

, pnsn = IdQn−1 and pnσn = 0. We set

xn,i := σn

(
yn,i

)
.

Therefore
yn,i = πnσn

(
yn,i

)
= πn

(
xn,i

)
= xn,i +Qn−1 = xn,i.

These terms xn,i define a k-basis for Q. As Q is finite-dimensional, there exists d ∈ N0 such that
Q = Qd; we fix d minimal. For all 0 ≤ a ≤ b, define the maps

pa,b : Qb → Qa, pa,b := pa+1 ◦ pa+2 ◦ · · · ◦ pb−1 ◦ pb,

sb,a : Qa → Qb, sb,a := sb ◦ sb−1 ◦ · · · ◦ sa+2 ◦ sa+1.

Clearly one has
pa,b ◦ sb,a = IdQa

.

Thus, for 0 ≤ i, a ≤ b we have

(17) pi,b ◦ sb,a =

{
pi,b ◦ sb,i ◦ si,a i > a
pi,a ◦ pa,b ◦ sb,a i ≤ a

=

{
si,a i > a
pi,a i ≤ a

Thus we get an isomorphism ϕ : Q→ grQ of objects in H
HYD given by

ϕ (x) := p0,d (x) + π1p1,d (x) + π2p2,d (x) + · · ·+ πd−2pd−2,d (x) + πd−1pd−1,d (x) + πd (x)
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=
∑

0≤t≤d
πtpt,d (x) , for every x ∈ Q,

where we set
π0 = IdQ0 , pd,d = IdQd

.

For 0 ≤ n ≤ d, we have

ϕ
(
xn,i

)
= ϕ

(
sd,n

(
xn,i

))
= ϕ

(
sd,nσn

(
yn,i

))
=
∑

0≤t≤d
πtpt,dsd,n

(
σn

(
yn,i

))

=
∑

n<t≤d
πtpt,dsd,n

(
σn

(
yn,i

))
+
∑

0≤t≤n
πtpt,dsd,n

(
σn

(
yn,i

))

(17)
=

∑
n<t≤d

πtst,n
(
σn

(
yn,i

))
+
∑

0≤t<n
πtpt,n

(
σn

(
yn,i

))
+ πnpn,dsd,n

(
σn

(
yn,i

))

=
∑

n<t≤d
πtst,t−1st−1,n

(
σn

(
yn,i

))
+
∑

0≤t<n
πtpt,n−1pn−1,n

(
σn

(
yn,i

))
+

+πnpn,dsd,n
(
σn

(
yn,i

))

=
∑

n<t≤d
πtstst−1,nσn

(
yn,i

)
+
∑

0≤t<n
πtpt,n−1pnσn

(
yn,i

)
+ πnσn

(
yn,i

)

= 0 + 0 + yn,i = yn,i.

Hence ϕ
(
xn,i

)
= yn,i. Since yn,i with 1 ≤ i ≤ dim (Qn/Qn−1) =: dn form a basis for Qn/Qn−1 we

have that

hyn,i ∈
Qn

Qn−1
,

(
yn,i

)
−1

⊗
(
yn,i

)
0
∈ H ⊗

Qn

Qn−1
.

Therefore there are χn
t,i ∈ H∗ and hnt,i ∈ H such that

(18) hyn,i =
∑

1≤t≤dn

χn
t,i (h) y

n,t,
(
yn,i

)
−1

⊗
(
yn,i

)
0
=
∑

1≤t≤dn

hni,t ⊗ yn,t.

We have

h
(
h′yn,i

)
=

∑
1≤s≤dn

χn
s,i (h

′)hyn,s =
∑

1≤s≤dn

χn
s,i (h

′)
∑

1≤t≤dn

χn
t,s (h) y

n,t

=
∑

1≤s≤dn

∑
1≤t≤dn

χn
t,s (h)χ

n
s,i (h

′) yn,t,

(hh′) yn,i =
∑

1≤t≤dn

χn
t,i (hh

′) yn,t

and hence
χn
t,i (hh

′) =
∑

1≤s≤dn

χn
t,s (h)χ

n
s,i (h

′) .

Moreover
yn,i = 1Hy

n,i =
∑

1≤t≤dn

χn
t,i (1H) yn,t

and hence
χn
t,i (1H) = δt,i.

We also have
(
yn,i

)
−1

⊗
((
yn,i

)
0

)
−1

⊗
((
yn,i

)
0

)
0

=
∑

1≤s≤dn

hni,s ⊗ (yn,s)−1 ⊗ (yn,s)0

=
∑

1≤s≤dn

hni,s ⊗
∑

1≤t≤dn

hns,t ⊗ yn,t

=
∑

1≤s≤dn

∑
1≤t≤dn

hni,s ⊗ hns,t ⊗ yn,t,
((
yn,i

)
−1

)
1
⊗
((
yn,i

)
−1

)
2
⊗
(
yn,i

)
0

=
∑

1≤t≤dn

∆H

(
hnt,i
)
⊗ yn,t

so that
∆H

(
hnt,i
)
=
∑

1≤s≤dn

hni,s ⊗ hns,t.

Moreover

yn,i = εH

((
yn,i

)
−1

) (
yn,i

)
0
=
∑

1≤t≤dn

εH
(
hnt,i
)
yn,t

and hence
εH
(
hnt,i
)
= δt,i.
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Finally
(
h1y

n,i
)
−1
h2 ⊗

(
h1y

n,i
)
0

=
∑

1≤s≤dn

χn
s,i (h1) (y

n,s)−1 h2 ⊗ (yn,s)0

=
∑

1≤s≤dn

χn
s,i (h1)

∑
1≤t≤dn

hns,th2 ⊗ yn,t

=
∑

1≤s≤dn

∑
1≤t≤dn

hns,tχ
n
s,i (h1)h2 ⊗ yn,t,

h1
(
yn,i

)
−1

⊗ h2
(
yn,i

)
0

=
∑

1≤s≤dn

h1h
n
i,s ⊗ h2y

n,s =
∑

1≤s≤dn

h1h
n
i,s ⊗

∑
1≤t≤dn

χn
t,s (h2) y

n,t

=
∑

1≤s≤dn

∑
1≤t≤dn

h1χ
n
t,s (h2)h

n
i,s ⊗ yn,t

Therefore, we get ∑
1≤s≤dn

hns,tχ
n
s,i (h1)h2 =

∑
1≤s≤dn

h1χ
n
t,s (h2)h

n
i,s.

We have

hxn,i = hσn

(
yn,i

)
= σn

(
hyn,i

)
= σn

(∑
1≤t≤dn

χn
t,i (h) y

n,t
)
=
∑

1≤t≤dn

χn
t,i (h)x

n,t,

(
xn,i

)
−1

⊗
(
xn,i

)
0

=
(
σn

(
yn,i

))
−1

⊗
(
σn

(
yn,i

))
0
=
(
yn,i

)
−1

⊗ σn

((
yn,i

)
0

)
=
∑

1≤t≤dn

hni,t ⊗ xn,t,

εQ
(
xn,i

)
= εn

(
xn,i

)
= εnσn

(
yn,i

)
= 0 for n > 0.

If Q is connected, then d0 = 1 so we may assume y0,0 := 1Q +Q−1. Since π0 = IdQ0 we get

σ0 = IdQ0 ◦ σ0 = π0 ◦ σ0 = IdQ0

and hence

x0,0 = σ0

(
y0,0

)
= σ0 (1Q +Q−1) = 1Q.

Since, by Proposition 1.3, Qa ·Qa′ ⊆ Qa+a′ for every a, a′ ∈ N0, we can write the product of two
elements of the basis in the form

(19) xa,lxa
′,l′ =

∑
u≤a+a′

∑
v
µa,l,a′,l′

u,v xu,v.

We compute

xa,l · xa′,l′ =
(
xa,l +Qa−1

) (
xa

′,l′ +Qa′−1

)

=
(
xa,lxa

′,l′
)
+Qa+a′−1

(19)
=
(∑

u≤a+a′

∑
v
µa,l,a′,l′

u,v xu,v
)
+Qa+a′−1

=
(∑

v
µa,l,a′,l′

a+a′,v x
a+a′,v

)
+Qa+a′−1

=
∑

v
µa,l,a′,l′

a+a′,v

(
xa+a′,v +Qa+a′−1

)

=
∑

v
µa,l,a′,l′

a+a′,v x
a+a′,v.

which gives

(20) xa,l · xa′,l′ =
∑

v
µa,l,a′,l′

a+a′,v x
a+a′,v.

Remark 3.1. Let H be a Hopf algebra and let (A,mA, uA) be an algebra in H
HYD. Let εA : A→ k

be an algebra map in H
HYD. The Hochschild cohomology in a monoidal category is known, see e.g.

[AMS2]. Consider k as an A-bimodule in H
HYD through εA. Then, following [AMS2, 1.24], we can

consider an analogue of the standard complex

H
HYD(k, k)

∂0
//
H
HYD(A, k)

∂1
//
H
HYD(A⊗2, k)

∂2
//
H
HYD(A⊗3, k)

∂3
// · · ·

Explicitly, given f in the corresponding domain of ∂n, for n = 0, 1, 2, 3, we have

∂0 (f) = f (1) εA − εAf (1) = 0,
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∂1 (f) = f ⊗ εA − fmA + εA ⊗ f,

∂2 (f) = f ⊗ εA − f (A⊗mA) + f (mA ⊗A)− εA ⊗ f,

∂3 (f) = f ⊗ εA − f (A⊗A⊗mA) + f (A⊗mA ⊗A)− f (mA ⊗A⊗A) + εA ⊗ f.

For every n ≥ 1 denote by

Zn
YD (A, k) := ker (∂n) , Bn

YD (A, k) := Im
(
∂n−1

)
and Hn

YD (A, k) :=
Zn
YD (A, k)

Bn
YD (A, k)

the abelian groups of n-cocycles, of n-coboundaries and the n-th Hochschild cohomology group in
H
HYD of the algebra A with coefficients in k. We point out that the construction above works for
an arbitrary A-bimodule M in H

HYD instead of k.

Next result is inspired by [EG, Proposition 2.3]. Two coquasi-bialgebras Q and Q′ in H
HYD will

be called gauge equivalent whenever there is some gauge transformation γ : Q⊗Q→ k in H
HYD

such that Qγ ∼= Q′ as coquasi-bialgebras in H
HYD, see Proposition 2.4 for the structure of Qγ .

Theorem 3.2. Let H be a semisimple and cosemisimple Hopf algebra and let (Q,m, u,∆, ε, ω) be
a f.d. connected coquasi-bialgebra in H

HYD. If H3
YD (grQ, k) = 0 then Q is gauge equivalent to a

connected bialgebra in H
HYD.

Proof. For t ∈ N0, and x, y, z in the basis of Q, we set

ωt (x⊗ y ⊗ z) := δ|x|+|y|+|z|,tω (x⊗ y ⊗ z) .

Let us check it defines a morphism ωt : Q⊗Q⊗Q→ k in H
HYD. It is left H-linear as, by means of

(18), the definition of ωt and theH-linearity of ω, we can prove that ωt

(
h
(
xn,i ⊗ xn

′,i′ ⊗ xn
′′,i′′
))

=

εH (h)ωt

(
xn,i ⊗ xn

′,i′ ⊗ xn
′′,i′′
)
.

Moreover it is left H-colinear as, by means of (18), the definition of ωt and the H-colinearity of
ω, we can prove that
(
xn,i ⊗ xn

′,i′ ⊗ xn
′′,i′′
)
〈−1〉

⊗ ωt

((
xn,i ⊗ xn

′,i′ ⊗ xn
′′,i′′
)
〈0〉

)
= 1H ⊗ ωt

(
xn,i ⊗ xn

′,i′ ⊗ xn
′′,i′′
)
.

Clearly, for x, y, z ∈ Q in the basis, one has
∑

t∈N0

ωt (x⊗ y ⊗ z) =
∑

t∈N0

δ|x|+|y|+|z|,tω (x⊗ y ⊗ z) = ω (x⊗ y ⊗ z)

so that we can formally write

(21) ω =
∑

t∈N0

ωt.

Since ε is trivial on elements in the basis of strictly positive degree, one gets

(22) ω0 = ε⊗ ε⊗ ε.

If ω = ω0 then Q is a (connected) bialgebra in H
HYD and the proof is finished. Thus we can

assume ω 6= ω0 and set

s : = min {i ∈ N : ωi 6= 0} ,

ωs : = ωs

(
ϕ−1 ⊗ ϕ−1 ⊗ ϕ−1

)
,

Q : = grQ.

Note that ωs is a morphism in H
HYD as a composition of morphisms in H

HYD.
Let n ∈ N0, let C

4 = Q ⊗Q⊗Q⊗Q and let u ∈ C4
(n) =

∑
i+j+k+l≤n Qi ⊗Qj ⊗Qk ⊗Ql.

A direct computation rewriting the cocycle condition using (21) proves that, for every n ∈ N0,
and u ∈ C4

(n)
∑

0≤i+j≤n

[ωi (Q⊗Q⊗m) ∗ ωj (m⊗Q⊗Q)] (u)(23)
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=
∑

0≤a+b+c≤n

[(ε⊗ ωa) ∗ ωb (Q⊗m⊗Q) ∗ (ωc ⊗ ε)] (u) .

Next aim is to check that [ωs] ∈ H3
YD (grQ, k) i.e. that

ωs

(
mQ ⊗Q⊗Q

)
+ ωs

(
Q⊗Q⊗mQ

)
=
(
εQ ⊗ ωs

)
+ ωs

(
Q⊗mQ ⊗Q

)
+
(
ωs ⊗ εQ

)
.

This is achieved by evaluating the two sides of the equality above on u := x ⊗ y ⊗ z ⊗ t where
x, y, z, t are elements in the basis and using (20). If u has homogeneous degree greater than
s, then both terms are zero. Otherwise, i.e. if u has homogeneous degree at most s, one has

ωs

(
mQ ⊗Q⊗Q

)
(u) = ωs (mQ ⊗Q⊗Q) (u) and similarly for the other pieces so that one has to

check that

ωs (m⊗Q⊗Q) (u) + ωs (Q ⊗Q⊗m) (u) = (ε⊗ ωs) (u) + ωs (Q⊗m⊗Q) (u) + (ωs ⊗ ε) (u) .

This equality follows by using (23) and the definition of s.
By assumption H3

YD (grQ, k) = 0 so that there exists a morphism v : Q ⊗Q → k in H
HYD such

that

ωs = ∂2v = v ⊗ εQ − v
(
Q⊗mQ

)
+ v

(
mQ ⊗Q

)
− εQ ⊗ v.

Explicitly, on elements in the basis we get

ωs (x⊗ y ⊗ z) = v (x⊗ y) εQ (z)− v (x⊗ y · z) + v (x · y ⊗ z)− εQ (x) v (y ⊗ z) .

Define ζ : Q ⊗Q→ k on the basis by setting

ζ (x⊗ y) := δ|x|+|y|,sv (x⊗ y) .

As we have done for ωt, one can check that ζ is a morphism in H
HYD.

Moreover on elements in the basis we get
(
∂2ζ
)
(x⊗ y ⊗ z)

=
(
ζ ⊗ εQ

)
(x⊗ y ⊗ z)− ζ

(
Q⊗mQ

)
(x⊗ y ⊗ z) + ζ

(
mQ ⊗Q

)
(x⊗ y ⊗ z)−

(
εQ ⊗ ζ

)
(x⊗ y ⊗ z)

= ζ (x⊗ y) εQ (z)− ζ (x⊗ y · z) + ζ (x · y ⊗ z)− εQ (x) ζ (y ⊗ z) .

By using (20), one gets

ζ (x⊗ y · z) = δ|x|+|y|+|z|,sv (x⊗ y · z) and ζ (x · y ⊗ z) = δ|x|+|y|+|z|,sv (x · y ⊗ z) .

By means of these equalities one gets
(
∂2ζ
)
(x⊗ y ⊗ z) = δ|x|+|y|+|z|,s

(
∂2v
)
(x⊗ y ⊗ z) = δ|x|+|y|+|z|,sωs (x⊗ y ⊗ z)

= δ|x|+|y|+|z|,sωs (x⊗ y ⊗ z) = δ|x|+|y|+|z|,sδ|x|+|y|+|z|,sω (x⊗ y ⊗ z)

= δ|x|+|y|+|z|,sω (x⊗ y ⊗ z) = ωs (x⊗ y ⊗ z) = ωs (x⊗ y ⊗ z) .

Therefore ∂2ζ = ωs. This means that we can assume that v (x⊗ y) = 0 for |x| + |y| 6= s.
Equivalently

(24) v (x⊗ y) = δ|x|+|y|,sv (x⊗ y) for x, y in the basis.

Set
v := v ◦ (ϕ⊗ ϕ) and γ := (ε⊗ ε) + v.

In particular, one gets

(25) v (x⊗ y) = δ|x|+|y|,sv (x⊗ y) for x, y in the basis.

Note also that both v and γ are morphisms in H
HYD as they are obtained as composition or sum

of morphisms in this category. Let us check that γ is a gauge transformation on Q in H
HYD.

Recall that x0,0 = 1Q is in the basis. For x in the basis, we have γ (x⊗ 1Q) = ε (x)+v (x⊗ 1Q) .
Note that

0 = δ|x|,sε (x) = δ|x|+|1Q|+|1Q|,sω (x⊗ 1Q ⊗ 1Q)

= ωs (x⊗ 1Q ⊗ 1Q) = ωs

(
x⊗ 1Q ⊗ 1Q

)
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= v
(
x⊗ 1Q

)
εQ
(
1Q
)
− v

(
x⊗ 1Q · 1Q

)
+ v

(
x · 1Q ⊗ 1Q

)
− εQ (x) v

(
1Q ⊗ 1Q

)

(24)
= v

(
x⊗ 1Q

)
− v

(
x⊗ 1Q

)
+ v

(
x⊗ 1Q

)
− εQ (x) δ|1Q|+|1Q|,sv

(
1Q ⊗ 1Q

)

= v (x⊗ 1Q)

so that v (x⊗ 1Q) = 0 and hence γ (x⊗ 1Q) = ε (x) + v (x⊗ 1Q) = ε (x) . Similarly one proves
γ (1Q ⊗ x) = ε (x) . Hence γ is unital. Note that the coalgebra C = Q ⊗ Q is connected as Q is.
Thus, in order to prove that γ : Q ⊗Q → k is convolution invertible it suffices to check (see [Mo,
Lemma 5.2.10]) that γ|k1Q⊗k1Q is convolution invertible. But for k, k′ ∈ k we have

γ (k1Q ⊗ k′1Q) = kk′γ (1Q ⊗ 1Q) = kk′ε (1Q) = kk′ = (ε⊗ ε) (k1Q ⊗ k′1Q)

Hence γ|k1Q⊗k1Q = (ε⊗ ε)|k1Q⊗k1Q
which is convolution invertible. Thus there is a k-linear map

γ−1 : Q⊗Q→ k and such that

γ ∗ γ−1 = ε⊗ ε = γ−1 ∗ γ.

Note that, by Lemma 2.3, γ ∈ H
HYD implies γ−1 ∈ H

HYD.
Therefore γ is a gauge transformation in H

HYD. By Proposition 2.4, Qγ is a coquasi-bialgebra
in H

HYD. By Proposition 2.6, we have that grQγ and grQ coincide as bialgebras in H
HYD. Hence

H3
YD (grQγ , k) = H3

YD (grQ, k) = 0. Therefore Qγ fulfills the same requirement of Q as in the
statement. Let us check that (ωγ)t = 0 for 1 ≤ t ≤ s (this will complete the proof by an induction
process as Q is finite-dimensional).

Note that the definition of γ and (25) imply

(26) γ (x⊗ y) = δ|x|+|y|,0γ (x⊗ y) + δ|x|+|y|,sγ (x⊗ y) for x, y in the basis.

Let C2 = Q⊗Q and let C2
(n) =

∑
i+j≤nQi ⊗Qj. For u ∈ C2

(2s−1) we have

[γ ∗ ((ε⊗ ε)− v)] (u) = (ε⊗ ε) (u)− v (u) + v (u)− v (u1) v (u2)
(25)
= (ε⊗ ε) (u) .

Therefore [γ ∗ ((ε⊗ ε)− v)]|C2
(2s−1)

= (ε⊗ ε)|C2
(2s−1)

. By uniqueness of the convolution inverse,

we deduce

(27) γ−1 (u) = (ε⊗ ε) (u)− v (u) , for u ∈ C2
(2s−1).

Let x, y, z be in the basis. Set u := x⊗ y ⊗ z and u := x⊗ y ⊗ z. We compute

(ωγ)s (u) = δ|x|+|y|+|z|,sω
γ (u)

= δ|x|+|y|+|z|,s

[
(ε⊗ γ) ∗ γ (Q⊗m) ∗ ω ∗ γ−1 (m⊗Q) ∗

(
γ−1 ⊗ ε

)]
(u)

= δ|x|+|y|+|z|,s

[
(ε⊗ γ) ∗ γ (Q⊗m) ∗ (ω0 + ωs) ∗ γ

−1 (m⊗Q) ∗
(
γ−1 ⊗ ε

)]
(u)

(22)
= δ|x|+|y|+|z|,s

[
(ε⊗ γ) ∗ γ (Q⊗m) ∗ γ−1 (m⊗Q) ∗

(
γ−1 ⊗ ε

)
+

(ε⊗ γ) ∗ γ (Q⊗m) ∗ ωs ∗ γ
−1 (m⊗Q) ∗

(
γ−1 ⊗ ε

)
]
(u)

=

[
δ|x|+|y|+|z|,s (ε⊗ γ) (u1) · γ (Q⊗m) (u2) · γ

−1 (m⊗Q) (u3) ·
(
γ−1 ⊗ ε

)
(u4) +

δ|x|+|y|+|z|,s (ε⊗ γ) (u1) · γ (Q⊗m) (u2) · ωs (u3) · γ
−1 (m⊗Q) (u4) ·

(
γ−1 ⊗ ε

)
(u5)

]
.

Now, all terms appearing in the last two lines, excepted ωs, vanish out of degrees 0 and s and
coincide with ε⊗ ε⊗ ε on degree 0. On the other hand ωs vanishes out of s. Since γ := (ε⊗ ε) + v
and in view of (27), the term δ|x|+|y|+|z|,s forces the following simplification

(ωγ)s (u) =

[
δ|x|+|y|+|z|,s [(ε⊗ v) (u) + v (Q⊗m) (u)− v (m⊗Q) (u)− (v ⊗ ε) (u)] +

+δ|x|+|y|+|z|,sωs (u)

]
.

Now ωs (u) = ωs (u) while one proves that (ε⊗ v) (u) =
(
εQ ⊗ v

)
(u) , δ|x|+|y|+|z|,sv (m⊗Q) (u) =

δ|x|+|y|+|z|,sv
(
mQ ⊗Q

)
(u) and similarly for the other pieces of the equality.

Thus one gets

(ωγ)s (u) =

[
δ|x|+|y|+|z|,s

[(
εQ ⊗ v

)
(u) + v

(
Q⊗mQ

)
(u)− v

(
mQ ⊗Q

)
(u)−

(
v ⊗ εQ

)
(u)
]
+

+δ|x|+|y|+|z|,sωs (u)

]
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= −δ|x|+|y|+|z|,s∂
2v + δ|x|+|y|+|z|,sωs (u) = 0.

For 0 ≤ t ≤ s− 1, analogously to the above, we compute

(ωγ)t (u) = δ|x|+|y|+|z|,tω
γ (u)

= δ|x|+|y|+|z|,t

[
(ε⊗ γ) ∗ γ (Q⊗m) ∗ ω ∗ γ−1 (m⊗Q) ∗

(
γ−1 ⊗ ε

)]
(u)

= δ|x|+|y|+|z|,t

[
(ε⊗ γ) ∗ γ (Q⊗m) ∗ ω0 ∗ γ

−1 (m⊗Q) ∗
(
γ−1 ⊗ ε

)]
(u)

(22)
= δ|x|+|y|+|z|,t

[
(ε⊗ γ) ∗ γ (Q⊗m) ∗ γ−1 (m⊗Q) ∗

(
γ−1 ⊗ ε

)]
(u)

= δ|x|+|y|+|z|,t (ε⊗ ε⊗ ε) (u) = δ0,t (ε⊗ ε⊗ ε) (u) .

Therefore we can now repeat the argument on ωγ instead of ω. Deforming several times we will
get a reassociator, say ω′, whose first non trivial component ω′

t, with t 6= 0, exceeds the dimension
of Q. In other words ω′ = ω′

0 which is trivial. Hence Q is gauge equivalent to a connected bialgebra
in H

HYD. �

4. Invariants

Given a k-algebra A, we denote by Hn (A,−) the n-th right derived functor of HomA,A (A,−) in
the category of A-bimodules. In other words, for every A-bimoduleM , Hn (A,M) is the Hochschild
cohomology group of A with coefficients in M . Denote by Zn (A,M) and Bn (A,M) the abelian
groups of n-cocycles and of n-coboundaries respectively.

Let H be a Hopf algebra, let B be a left H-module algebra and let M be a B#H-bimodule,
where B#H denotes the smash product algebra, see e.g. [Mo, Definition 4.1.3]. Then Hn (B,M)
becomes an H-bimodule as follows. Its structure of left H-module is given via εH and its structure
of right H-module is defined, for every f ∈ Zn (B,M) and h ∈ H, by setting

[f ]h :=
[
χh
n (M) (f)

]

where, for every k ∈ k, b1, . . . , bn ∈ B, we set

χh
0 (M) (f) (k) := (1B#S (h1)) f (k) (1B#h2) for n = 0 while and for n ≥ 1

χh
n (M) (f) (b1 ⊗ b2 ⊗ · · · ⊗ bn) := (1B#S (h1)) f (h2b1 ⊗ h3b2 ⊗ · · · ⊗ hn+1bn) (1B#hn+2) .

Moreover

(28) ∂n ◦ χh
n (M) = χh

n+1 (M) ◦ ∂n, for every n ≥ −1,

where ∂n : Homk (B
⊗n,M) → Homk

(
B⊗(n+1),M

)
denotes the differential of the usual Hochschild

cohomology.

Denote by Hn (B,M)H the space of H-invariant elements of Hn (B,M).

Proposition 4.1. Let H be a semisimple Hopf algebra and let B be a left H-module algebra.
Denote by A := B#H. Then, for each n ∈ N0 and for every A-bimodule M

Hn (B#H,M) ∼= Hn (B,M)
H
.

Proof. We will apply [Stf, Equation (3.6.1)]. To this aim we have to prove first that A/B is
an H-Galois extension such that A is flat as left and right B-module. Now, A = B#ξH for
ξ : H ⊗H → B defined by ξ (x, y) = εH (x) εH (y) 1A, cf. [Mo, Definition 7.1.1]. Moreover a direct
computation shows that ι : B → A : b 7→ b#1H is a right H-extension where A is regarded as a
right H-comodule via ρ : A → A ⊗H : b#h 7→ (b#h1)⊗ h2. Thus, by [Mo, Proposition 7.2.7], we
know that ι : B → A is H-cleft and hence, by [Mo, Theorem 8.2.4], it is H-Galois. The B-bimodule
structure of A is induced by ι so that, explicitly, we have

b′ (b#h) = (b′#1H) (b#h) = b′b#h,

(b#h) b′ = (b#h) (b′#1H) = b (h1b
′)#h2.
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Note that A = B#H is flat as a left B-module as H is a free k-module (k is a field). Now consider
the map α : H ⊗ B → A defined by setting α (h⊗ b) := h1b ⊗ h2 (note that it is defined as the
braiding in H

HYD). We have

α (h⊗ bb′) = h1 (bb
′)⊗ h2 = (h1b) (h2b

′)⊗ h3 = (h1b#h2) b
′ = α (h⊗ b) b′

so that α is rightB-linear whereH⊗B is regarded as a right module via (h#b) b′ := h#bb′. NowH is
semisimple and hence separable (see [Stf, Corollary 3.7]). Thus H is finite-dimensional and hence it
has bijective antipode SH . Thus α is invertible with inverse given by α−1 (b#h) := h2⊗S

−1
H (h1) b.

Therefore α is an isomorphism of right B-modules and hence A is flat as a right B-module as
H ⊗B is.

We have now the hypotheses necessary to apply [Stf, Equation (3.6.1)] and obtain

Hn (A,M) ∼= Hom−,H (k,Hn (B,M)) = Homk (k,H
n (B,M))

H ∼= Hn (B,M)
H
.

�

Remark 4.2. Proposition 4.1 in the particular case when M = k and B is finite-dimensional is
[SV, Theorem 2.17]. Note that in the notations therein, one has E(B) = ⊕n∈N0En(B, k) where
En(B, k) = ExtnB(k, k)

∼= Hn(B, k). The latter isomorphism is [CE, Corollary 4.4, page 170].

Let H be a Hopf algebra and let B be a bialgebra in the braided category H
HYD. Denote by

A := B#H the Radford-Majid bosonization of B by H, see e.g. [Ra3, Theorem 1]. Note that A
is endowed with an algebra map εA : A → k defined by εA (b#h) = εB (b) εH (h) so that we can
regard k as an A-bimodule via εA. Then we can consider Hn (B, k) as an H-bimodule as follows.
Its structure of left H-module is given via εH and its structure of right H-module is defined, for
every f ∈ Zn (B, k) and h ∈ H, by setting

[f ]h := [fh] ,

where (fh) (z) = f (hz) , for every z ∈ B⊗n. The latter is the usual right H-module structure of
Homk (B

⊗n, k) . Indeed, for every n ≥ −1, the vector space Homk (B
⊗n, k) is an H-bimodule with

respect to this right H-module structure and the left one induced by εH .

Corollary 4.3. Let H be a semisimple Hopf algebra and let B be a bialgebra in the braided
category H

HYD. Set A := B#H. Then, for each n ∈ N0

Hn (B#H, k) ∼= Hn (B, k)
H

and the differential ∂n : Homk (B
⊗n, k) → Homk

(
B⊗(n+1), k

)
of the usual Hochschild cohomology

is H-bilinear.

Proof. In the particular caseM = k, the right moduleH-structure used in Proposition 4.1 simplifies
as follows. It is defined, for every f ∈ Zn (B, k) and h ∈ H, by setting

[f ]h :=
[
χh
n (k) (f)

]

where, for every k ∈ k, b1, . . . , bn ∈ B, we set

χh
0 (k) (f) (k) : = εH (h) f (k) for n = 0 while and for n ≥ 1

χh
n (k) (f) (b1 ⊗ b2 ⊗ · · · ⊗ bn) : = f (h1b1 ⊗ h2b2 ⊗ · · · ⊗ hnbn) .

More concisely χh
n (k) (f) (z) = f (hz) for every n ∈ N0 and z ∈ B⊗n i.e. [f ]h := [fh] where

fh := χh
n (k) (f) .

Now consider the differential ∂n : Homk (B
⊗n, k) → Homk

(
B⊗(n+1), k

)
of the usual Hochschild

cohomology. Note that for each n ∈ N0, Homk (B
⊗n, k) is regarded as a bimodule over H using

the left H-module structures of its arguments. By (28), we have

∂nχh
n (k) (f) = χh

n+1 (k) ∂
n (f)

Since χh
n (k) (f) = fh, the last displayed equality becomes ∂n (fh) = ∂n (f)h for every n ∈ N0.

Thus ∂n is right H-linear. Since hf = εH (h) f for every f ∈ Homk (B
⊗n, k) , h ∈ H, we get that

∂n is also left H-linear whence H-bilinear. �
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Remark 4.4. Note that, in the context of the proof of [EG, Proposition 5.1], one has

H3 (B (V )#C [Zp] ,C) ∼= H3 (B (V ) ,C)
Zp .

This is a particular case of Corollary 4.3 where H = C [Zp] , V ∈ H
HYD and B = B (V ).

Proposition 4.5. Let C and D be abelian categories. Let r, ω : C → D be exact functors such that
r is a subfunctor of ω i.e. there is a natural transformation η : r → ω which is a monomorphism
when evaluated on objects. If X is a subobject of Y then r (X) = ω (X) ∩ r (Y ) . Moreover, for
every morphism f : X → Y in C one has

ker (r (f)) = r (ker (f)) = ω (ker (f)) ∩ r (X) = ker (ω (f)) ∩ r (X) ,

Im (r (f)) = Im (ω (f)) ∩ r (Y ) = r (Im (f)) .

Proof. The proof is similar to [Stn, Proposition 1.7, page 138].
�

Remark 4.6. From Corollary 4.3, we have

Hn (B, k)
H

= {[f ] | f ∈ Zn (B, k) , εH (h) [f ] = [f ]h, for every h ∈ H}

= {[f ] | f ∈ Zn (B, k) , [εH (h) f ] = [fh] , for every h ∈ H}

where, for every z ∈ B⊗n, we have
(fh) (z) = f (hz) .

Note that, for any H-bimodule M one has

HomH,H (H,M) ∼=MH = {m ∈M | hm = mh, for every h ∈ H} .

Note also that H is a separable k-algebra whence it is projective in the category of H-bimodules.

As a consequence HomH,H (H,−) ∼= (−)
H

: HMH → M is an exact functor (here HMH is the
category ofH-bimodules and M the category of k-vector spaces). By Proposition 4.5 applied to the

case when r := (−)
H

: HMH → M and ω is the forgetful functor, for every morphism f : X → Y
of H-bimodules one has

ker
(
fH
)
= ker (f) ∩XH = (ker (f))

H
and Im

(
fH
)
= Im (f) ∩ Y H = (Im (f))

H
.

Still by Corollary 4.3, we know that the differential ∂n : Homk (B
⊗n, k) −→ Homk

(
B⊗(n+1), k

)
of

the usual Hochschild cohomology is H-bilinear. Thus we can apply the argument above to get

ker
(
(∂n)H

)
= ker (∂n) ∩ Homk

(
B⊗n, k

)H
= (ker (∂n))H and

Im
((
∂n−1

)H)
= Im

(
∂n−1

)
∩ Homk

(
B⊗n, k

)H
=
(
Im
(
∂n−1

))H
.

Now Homk (B
⊗n, k)

H
= HomH,− (B⊗n, k) so that we get

Zn
H-Mod (B, k) = Zn (B, k) ∩HomH,−

(
B⊗n, k

)
= Zn (B, k)

H
and

Bn
H-Mod (B, k) = Bn (B, k) ∩ HomH,−

(
B⊗n, k

)
= Bn (B, k)H .

where Zn
H-Mod (B, k) and Bn

H-Mod (B, k) denotes the the abelian groups of n-cocycles, of n-coboundaries
for the cohomology of the algebra B with coefficients in k computed in the monoidal category H-
Mod of left H-modules. The corresponding n-th Hochschild cohomology group is

Hn
H-Mod (B, k) :=

Zn
H-Mod (B, k)

Bn
H-Mod (B, k)

=
Zn (B, k)

H

Bn (B, k)H
∼=

(
Zn (B, k)

Bn (B, k)

)H

= Hn (B, k)
H
.

Denote by D (H) the Drinfeld double, see e.g. the first structure of [Maj, Theorem 7.1.1].

Proposition 4.7. In the setting of Corollary 4.3 assume that H is also cosemisimple. Then, for
n ∈ N0

Zn
YD (B, k) = Zn (B, k)

D(H)
, Bn

YD (B, k) = Bn (B, k)
D(H)

and Hn
YD (B, k) ∼= Hn (B, k)

D(H)
.

where Zn (B, k) and Bn (B, k) are regarded as D (H)-subbimodules of Homk (B
⊗n, k) whose struc-

ture is induced by the left D (H)-module structures of its arguments.
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Moreover Hn (B, k)
D(H)

is a subspace of Hn (B, k)
H
.

Proof. For shortness, in this proof, we denote D(H) by D. Consider the analogue of the standard
complex as in Remark 3.1

H
HYD(k, k)

∂0
//
H
HYD(B, k)

∂1
//
H
HYD(B⊗2, k)

∂2
// · · ·

where ∂n is induced by the differential ∂n : Homk (B
⊗n, k) −→ Homk

(
B⊗(n+1), k

)
of the ordinary

Hochschild cohomology. Now, sinceH is semisimple, it is finite-dimensional (whence it has bijective
antipode) so that, by a result essentially due to Majid (see [Mo, Proposition 10.6.16]) and by [RT,
Proposition 6], we get a category isomorphism H

HYD ∼= DM. Thus the complex above can be
rewritten as follows

HomD,−(k, k)
∂0

// HomD,−(B, k)
∂1
// HomD,−(B

⊗2, k)
∂2

// · · ·

Now, since, for each n ∈ N0, we have HomD,− (B⊗n, k) = Homk (B
⊗n, k)

D
, we obtain the complex

Homk(k, k)
D ∂0

// Homk(B, k)
D ∂1

// Homk(B
⊗2, k)D

∂2
// · · ·

We will write (∂n)
D

instead of ∂n when we would like to stress that the map considered is the one
induced on invariants. Thus we will write equivalently

Homk(k, k)
D

(∂0)D
// Homk(B, k)

D
(∂1)D

// Homk(B
⊗2, k)D

(∂2)D
// · · ·

Now, assume H is also cosemisimple. Since H is both semisimple and cosemisimple, by [Ra2,
Proposition 7] the Hopf algebra D is semisimple as an algebra. Thus, as in Remark 4.6 in case of

H , the functor (−)
D
: DMD → M is exact (here DMD is the category of D-bimodules and M the

category of k-vector spaces). By Proposition 4.5 applied to the case when r := (−)D : DMD → M

and ω is the forgetful functor, for every morphism f : X → Y of D-bimodules one has

ker
(
fD
)
= ker (f) ∩XD = (ker (f))

D
and Im

(
fD
)
= Im (f) ∩ Y D = (Im (f))

D
.

In particular we get

ker
(
(∂n)D

)
= ker (∂n) ∩ Homk

(
B⊗n, k

)D
= ker (∂n)D and

Im
((
∂n−1

)D)
= Im

(
∂n−1

)
∩Homk

(
B⊗n, k

)D
= Im

(
∂n−1

)D

and hence

Zn
YD (B, k) = Zn (B, k) ∩ HomD,−

(
B⊗n, k

)
= Zn (B, k)

D
and

Bn
YD (B, k) = Bn (B, k) ∩ HomD,−

(
B⊗n, k

)
= Bn (B, k)D

Then we obtain

Hn
YD (B, k) =

Zn
YD (B, k)

Bn
YD (B, k)

=
Zn (B, k)

D

Bn (B, k)
D

∼= Hn (B, k)
D
.

Let us prove the last part of the statement. The correspondence between the left D-module struc-
ture and the structure of Yetter-Drinfeld module over H is written explicitly in [Maj, Proposition
7.1.6]. In particular D = H∗ ⊗ H and given V ∈ H

HYD, the two structures are related by the
following equality (f ⊗ h) ⊲ v = f

(
(h⊲ v)−1

)
(h⊲ v)0 for every f ∈ H∗, h ∈ H, v ∈ V. Thus

(εH ⊗ h)⊲v = h⊲v. Moreover H is a Hopf subalgebra of D via h 7→ εH ⊗h, where D is considered
with the first structure of [Maj, Theorem 7.1.1]. Since the D-bimodule structure of Hn (B, k) is
induced by the one of Homk (B

⊗n, k) which comes from the left D-module structures of its argu-

ments and similarly for the H-bimodule structure of Hn (B, k) , we deduce that Hn (B, k)
D

is a

subspace of Hn (B, k)
H
. �
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Example 4.8. In the setting of the proof of [An, Theorem 4.1.3], a Nichols algebra B (V ) such

that H3 (B (V ) , k)
Zm = 0 is considered where k is a field of characteristic zero. By Proposition 4.7

applied in the case H = kZm and B = B (V ) , we have that H3
YD (B (V ) , k) ∼= H3 (B (V ) , k)

D(H)
is

a subspace of H3 (B (V ) , k)
H

= H3 (B (V ) , k)
Zm = 0. Thus we get H3

YD (B (V ) , k) = 0. Therefore,

in view of Theorem 3.2, if (Q,m, u,∆, ε, ω) is a f.d. connected coquasi-bialgebra in H
HYD such that

grQ ∼= B (V ) (as above) as augmented algebras in H
HYD (the counit must be the same in order

to have the same Yetter-Drinfeld module structure on k), then we can conclude that Q is gauge
equivalent to a connected bialgebra in H

HYD.

Remark 4.9. Let A be a finite-dimensional coquasi-bialgebra with the dual Chevalley property
i.e. the coradical H of A is a coquasi-subbialgebra of A (in particular H is cosemisimple). Assume
the coquasi-bialgebra structure of H has trivial reassociator (i.e. it is an ordinary bialgebra) and
also assume it has an antipode (i.e. it is a Hopf algebra). Then, by [AP, Corollary 6.4], grA is
isomorphic to R#H as a coquasi-bialgebra, where R is a suitable connected bialgebra in H

HYD.
Note that R#H is the usual Radford-Majid bosonization as H has trivial reassociator, see [AP,
Definition 5.4]. Hence we can compute

H3 (grA, k) = H3 (R#H, k) .

Assume further that H is semisimple. Then, by Corollary 4.3, we have

Hn (R#H, k) ∼= Hn (R, k)
H

so that H3 (grA, k) ∼= H3 (R, k)
H
. Thus, if H3 (R, k)

H
= 0, one gets H3 (grA, k) = 0 which is the

analogue of the condition [EG, Proposition 2.3] (note that our A is the dual of the one considered
therein) which guarantees that A is gauge equivalent to an ordinary Hopf algebra, if A has an a
quasi-antipode and k = C. Next we will give another approach to arrive at the same conclusion

but just requiring H3
YD (R, k) = 0. Note that a priori H3

YD (R, k) ∼= H3 (R, k)
D(H)

is smaller than

H3 (R, k)
H
.

5. Dual Chevalley

The main aim of this section is to prove Theorem 5.6. Let A be a Hopf algebra over a field
k of characteristic zero such that the coradical H of A is a sub-Hopf algebra (i.e. A has the
dual Chevalley Property). Assume H is finite-dimensional so that H is semisimple. By [ABM,
Theorem I], there is a gauge transformation ζ : A ⊗ A → k such that Aζ is isomorphic, as a
coquasi-bialgebra, to the bosonization Q#H of a connected coquasi-bialgebra Q in H

HYD by H.
By construction ζ is H-bilinear and H-balanced: this follows from [ABM, Proposition 5.7] (note
that gauge transformation vB : B ⊗ B → k, used therein for B := R#ξH , is H-bilinear and
H-balanced, as observed in the proof) and the fact that there is an H-bilinear Hopf algebra
isomorphism ψ : B → A (see [ABM, Proof of Theorem I, page 36 and Theorem 6.1] which is
a consequence of [AMS1, Theorem 3.64]) where (R, ξ) is a suitable connected pre-bialgebra with

cocycle in H
HYD (note that ζ = vB ◦

(
ψ−1 ⊗ ψ−1

)
): here by connected pre-bialgebra we mean that

the coradical R0 of R is k1R (by the properties of 1R this implies that R0 is a subcoalgebra in
H
HYD of R). Assume that A is finite-dimensional. Then Q#H and hence Q is finite dimensional.

Thus, by Theorem 3.2, if H3
YD (grQ, k) = 0, then Q is gauge equivalent to a connected bialgebra

in H
HYD.
First let us check which condition on A guarantee that H3

YD (grQ, k) = 0. Note that by con-

struction Q = Rv (see [ABM, Proposition 5.7]) where v := (λξ)
−1

, the convolution inverse of λξ
and λ : H → k denotes the total integral on H . Thus we can rewrite gr (Q) as gr (Rv) .

Moreover vB is given by vB ((r#h) ⊗ (r′#h′)) = v (r ⊗ hr′) εH (h′) for every r, r′ ∈ R, h, h′ ∈ H.
By [AMStu, Proposition 2.5], gr (R) inherits the pre-bialgebra structure in H

HYD of R. This is
proved by checking that Ri · Rj ⊆ Ri+j for every i, j ∈ N0, where Ri denotes the i-th term of the
coradical filtration of R. Moreover Ri is a subcoalgebra of R in H

HYD.
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Lemma 5.1. Keep the above hypotheses and notations. Then gr (Rv) and gr (R) coincide as bial-
gebras in H

HYD where the structures of gr (R) are induced by the ones of (R, ξ) .

Proof. By Theorem 1.5, gr (Rv) = gr (Q) is a connected bialgebras in H
HYD.

Note that Rv and R coincide as coalgebras in H
HYD so that gr (Rv) and gr (R) coincide as coal-

gebras in H
HYD. They also have the same unit. It remains to check that their two multiplications

coincide too.
Since ξ is unital, by [AMS1, Proposition 4.8], we have that v is unital and this is equivalent to

v−1 unital (see the proof therein).
Let C := R ⊗ R. Let n > 0 and let w ∈ C(n) =

∑
i+j≤n Ri ⊗Rj . By [AMS1, Lemma 3.69], we

have that

∆C (w) − w ⊗ (1R)
⊗2

− (1R)
⊗2

⊗ w ∈ C(n−1) ⊗ C(n−1).

Thus we get

w1 ⊗ w2 ⊗ w3 −∆C (w)⊗ (1R)
⊗2

−∆C

(
(1R)

⊗2
)
⊗ w ∈ ∆C

(
C(n−1)

)
⊗ C(n−1)

and hence

w1⊗w2⊗w3−w⊗(1R)
⊗2⊗(1R)

⊗2−(1R)
⊗2⊗w⊗(1R)

⊗2−(1R)
⊗4⊗w ∈ C(n−1)⊗C(n−1)⊗C(n−1).

Since m
(
C(n−1)

)
⊆
∑

i+j≤nm (Ri ⊗Rj) ⊆ Rn−1 we get

w1⊗m (w2)⊗w3−w⊗1R⊗(1R)
⊗2

−(1R)
⊗2

⊗m (w)⊗(1R)
⊗2

−(1R)
⊗3

⊗w ∈ C(n−1)⊗Rn−1⊗C(n−1)

and hence

(29) w1 ⊗ (m (w2) +Rn−1)⊗ w3 = (1R)
⊗2

⊗ (m (w) +Rn−1)⊗ (1R)
⊗2
.

Let x, y ∈ R. We compute

x ·v y =
(
x+R|x|−1

)
·v
(
y +R|y|−1

)

= (x ·v y) +R|x|+|y|−1 = mv (x⊗ y) +R|x|+|y|−1

= v ((x⊗ y)1)m ((x⊗ y)2) v
−1 ((x⊗ y)3) +R|x|+|y|−1

= v ((x⊗ y)1)
(
m ((x⊗ y)2) +R|x|+|y|−1

)
v−1 ((x⊗ y)3)

(29)
= v

(
(1R)

⊗2
) (
m (x⊗ y) +R|x|+|y|−1

)
v−1

(
(1R)

⊗2
)

= m (x⊗ y) +R|x|+|y|−1 = (x · y) +R|x|+|y|−1 = x · y.

�

The following result is inspired by [AMS1, Theorem 3.71].

Lemma 5.2. Let H be a cosemisimple Hopf algebra. Let C be a left H-comodule coalgebra such
that C0 is a one-dimensional left H-comodule subcoalgebra of C. Let B = C#H be the smash
coproduct of C by H i.e. the coalgebra defined by

∆B (c#h) =
∑(

c1#(c2)〈−1〉 h1

)
⊗
(
(c2)〈0〉 #h2

)
,(30)

εB (c#h) = εC (c) εH (h) .

Then, for every n ∈ N0 we have Bn = Cn#H.

Proof. Since C0 is a subcoalgebra of C in HM and, for n ≥ 1, one has Cn = Cn−1 ∧C C0, then
inductively one proves that Cn is a subcoalgebra of C in HM. Set B(n) := Cn#H for every n ∈ N0.
Let us check that B(n) = Bn by induction on n ∈ N0.

Let n = 0. First note B = ∪m∈N0B(m) and, since ∆C (Cm) ⊆
∑

0≤i≤m Ci ⊗Cm−i, we also have

∆B

(
B(m)

)
= ∆B (Cm#H) ⊆

∑
0≤i≤m

∑(
Ci#(Cm−i)〈−1〉 (H)1

)
⊗
(
(Cm−i)〈0〉 #(H)2

)

⊆
∑

0≤i≤m
(Ci#H)⊗ (Cm−i#(H)) =

∑
0≤i≤m

B(i) ⊗B(m−i).
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Therefore
(
B(m)

)
m∈N0

is a coalgebra filtration for B and hence, by [Sw, Proposition 11.1.1], we

get that B(0) ⊇ B0. Since C0 is one-dimensional, there is a grouplike element 1C ∈ C0 such that

C0 = k1C . Moreover one checks that C0 is a subcoalgebra of C in HM implies
∑

(1C)〈−1〉 ⊗

(1C)〈0〉 = 1H ⊗ 1C .

Let σ : H → C ⊗H : h 7→ 1C ⊗ h be the canonical injection. We have

∆Bσ (h) = ∆B (1C ⊗ h) =
∑(

1C#(1C)〈−1〉 h1

)
⊗
(
(1C)〈0〉 #h2

)

=
∑

(1C#1Hh1)⊗ (1C#h2) =
∑

σ (h1)⊗ σ (h2) = (σ ⊗ σ)∆H (h) ,

εBσ (h) = εB (1C ⊗ h) = εC (1C) εH (h) = εH (h)

so that σ is a coalgebra map. Since H is cosemisimple and σ an injective coalgebra map we deduce
that also σ (H) = C0 ⊗H = B(0) is a cosemisimple subcoalgebra of B whence B(0) ⊆ B0.

Let n > 0 and assume that Bi = B(i) for 0 ≤ i ≤ n− 1. Let
∑
i∈I

ci#hi ∈ Bn. Then

∆B

(
∑

i∈I

ci#hi

)
∈ Bn−1 ⊗B +B ⊗B0 = Cn−1 ⊗H ⊗ C ⊗H + C ⊗H ⊗ C0 ⊗H.

Let pn : C → C
Cn

be the canonical projection. If we apply (pn−1 ⊗ εH ⊗ p0 ⊗H) we get

0 = (pn−1 ⊗ εH ⊗ p0 ⊗H)∆B

(
∑

i∈I

ci#hi

)

= (pn−1 ⊗ εH ⊗ p0 ⊗H)

(
∑

i∈I

(
(ci)1 #((ci)2)〈−1〉 (hi)1

)
⊗
(
((ci)2)〈0〉 #(hi)2

))

= (pn−1 ⊗ p0 ⊗H)

(
∑

i∈I

(ci)1 ⊗ (ci)2 ⊗ hi

)
= ((pn−1 ⊗ p0)∆C ⊗H)

(
∑

i∈I

ci#hi

)
.

Thus
∑
i∈I

ci#hi ∈ ker((pn−1 ⊗ p0)∆C ⊗H) = [ker ((pn−1 ⊗ p0)∆C)]⊗H = Cn ⊗H = B(n). Thus

Bn ⊆ B(n). On the other hand, form ∆C (Cn) ⊆ Cn−1 ⊗ C + C ⊗ C0 we deduce

∆B

(
B(n)

)
= ∆B (Cn ⊗H)

⊆
∑(

(Cn)1 #((Cn)2)〈−1〉 (H)1

)
⊗
(
((Cn)2)〈0〉 #(H)2

)

⊆
∑(

Cn−1#(C)〈−1〉H
)
⊗
(
(C)〈0〉 #H

)
+
∑(

C#(C0)〈−1〉H
)
⊗
(
(C0)〈0〉 #H

)

⊆ (Cn−1#H)⊗ (C#H) + (C#H)⊗ (C0#H)

= B(n−1) ⊗B +B ⊗B(0) = Bn−1 ⊗B +B ⊗B0

and hence B(n) ⊆ Bn. �

Definition 5.3. Let A be a Hopf algebra over a field k such that the coradical H of A is a sub-
Hopf algebra (i.e. A has the dual Chevalley Property). Set G := gr (A) . There are two canonical
Hopf algebra maps

σG : H → gr (A) : h 7→ h+A−1,

πG : gr (A) → H : a+An−1 7→ aδn,0, n ∈ N0.

The diagram of A (see [AS1, page 659]) is the vector space

D (A) :=
{
d ∈ gr (A) |

∑
d1 ⊗ πG (d2) = d⊗ 1H

}
.

It is a bialgebra in H
HYD as follows. D (A) is a subalgebra of G. The left H-action, the left

H-coaction of D (A) , the comultiplication and counit are given respectively by

h ⊲ d :=
∑

σG (h1) dσGS (h2) , ρ (d) =
∑

πG (d1)⊗ d2,
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∆D(A) (d) :=
∑

d1σGSHπG (d2)⊗ d3, εD(A) (d) = εG (d) .

Although the following result seems to be folklore, we include here its statement for future
references.

Proposition 5.4. Let A be a Hopf algebra over a field k such that the coradical H of A is a
sub-Hopf algebra. Let A′ be a Hopf algebra over a field k. Let f : A′ → A be an isomorphism of
Hopf algebras. Then H ′ := f−1 (H) ∼= H is the coradical of A′ and it is a sub-Hopf algebra of A′.
Thus we can identify H ′ with H. Moreover f induces an isomorphism D (f) : D (A′) → D (A) of
bialgebras in H

HYD.

Proposition 5.5. Keep the hypotheses and notations of the beginning of the section. Then D (A) ∼=
D (R#ξH) ∼= gr (R) as bialgebras in H

HYD.

Proof. Apply Proposition 5.4 to the canonical isomorphism ψ : B := R#ξH → A that we recalled
at the beginning of the section to get that D (R#ξH) ∼= D (A) . Note that, by H-linearity we have

ψ (1R#h) = ψ ((1R#1H) (1R#h)) = ψ ((1R#1H)h) = ψ (1R#1H)h = h

so that ψ (k1R ⊗H) = H and henceH ′ = ψ−1 (H) = k1R⊗H with the notation of Proposition 5.4.
Thus B0 = k1R ⊗H = R0 ⊗H so that we can identify B0 with H via the canonical isomorphism
H → R0 ⊗H : h 7→ 1R ⊗ h. Its inverse is R0 ⊗H → H : r ⊗ h 7→ εR (r) h. With this identification
and by setting G := gr (B) , we can consider the canonical bialgebra maps

σG : H → gr (B) : h 7→ 1R#h+ (R#ξH)−1 ,

πG : gr (B) → H : r#h+ (R#ξH)n−1 7→ εR (r) hδn,0, where r#h ∈ (R#ξH)n , n ∈ N0.

Since the underlying coalgebra of B is exactly the smash coproduct of R by H and (R, ξ) is a
connected pre-bialgebra with cocycle in H

HYD, by Lemma 5.2, we have that Bn = Rn ⊗H. Let us
compute D := D (B) . As a vector space it is

D :=
{
d ∈ G |

∑
d1 ⊗ πG (d2) = d⊗ 1H

}
.

By [AS1, Lemma 2.1], we have that D = ⊕n∈N0D
n where Dn = D ∩ Gn = D ∩ Bn

Bn−1
. Let d :=

∑
i∈I

ri#hi ∈ Dn where we can assume
∑
i∈I

ri#hi ∈ Bn\Bn−1 and, for every i ∈ I, ri#hi ∈ Bn\Bn−1.

Then
∑
i∈I

ri#hi =
∑
i∈I

ri#hi and hence the fact that d is coinvariant rewrites as

(31)
∑

i∈I

(
ri#hi

)
1
⊗ πG

((
ri#hi

)
2

)
=
∑

i∈I

ri#hi ⊗ 1H .

By definition of πG and (1), the left-hand side becomes
∑

i∈I

(
ri#hi

)
1
⊗ πG

((
ri#hi

)
2

)
=
∑

i∈I

((ri#(hi)1) +Bn−1)⊗ (hi)2

so that (31) becomes
∑

i∈I

((ri#(hi)1) +Bn−1)⊗ (hi)2 =
∑

i∈I

ri#hi ⊗ 1H =
∑

i∈I

(ri#hi +Bn−1)⊗ 1H

i.e. ∑

i∈I

(ri#(hi)1)⊗ (hi)2 −
∑

i∈I

ri#hi ⊗ 1H ∈ Bn−1 ⊗H = Rn−1 ⊗H ⊗H.

If we apply R⊗ εH ⊗H , we get
∑

i∈I

ri ⊗ hi −
∑

i∈I

riεH (hi)⊗ 1H ∈ Rn−1 ⊗H = Bn−1.

Thus
∑
i∈I

ri#hi =
∑
i∈I

ri#hi =
∑
i∈I

(ri#hi +Bn−1) =
∑
i∈I

(riεH (hi)⊗ 1H) +Bn−1.
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Since
∑
i∈I

ri#hi ∈ Bn\Bn−1 we get that

(∑
i∈I

riεH (hi)

)
⊗ 1H /∈ Bn−1 and hence

∑
i∈I

riεH (hi) /∈

Rn−1 and we can write

∑

i∈I

ri#hi =

(
∑

i∈I

riεH (hi)

)
⊗ 1H .

Therefore we have proved that the map

ϕn :
Rn

Rn−1
→ Dn : r 7→ r ⊗ 1H ,

which is well-defined as Dn = D ∩Gn = D ∩ Bn

Bn−1
= D ∩ Rn⊗H

Rn−1⊗H , is also surjective.

It is also injective as ϕn (r) = ϕn (s) implies r ⊗ 1H − s ⊗ 1H ∈ Bn−1 = Rn−1 ⊗H and hence,
by applying R ⊗ εH , we get r − s ∈ Rn−1 i.e. r = s. Therefore ϕn is an isomorphism such that
∑
i∈I

ri#hi = ϕn

(∑
i∈I

riεH (hi)

)
and hence

ϕ−1
n

(
∑

i∈I

ri#hi

)
=
∑

i∈I

riεH (hi).

Clearly this extends to a graded k-linear isomorphism

ϕ : gr (R) → D.

Let us check that ϕ is a morphism in H
HYD. First note that, for every r ∈ Rn, we have

ϕ (r +Rn−1) = δ|r|,nϕ (r +Rn−1) = δ|r|,nϕn (r +Rn−1) = δ|r|,nϕn (r)

= δ|r|,nr ⊗ 1H = δ|r|,n

(
r ⊗ 1H + (R#ξH)n−1

)
= r ⊗ 1H + (R#ξH)n−1 .

Thus

(32) ϕ (r +Rn−1) = r ⊗ 1H + (R#ξH)n−1 , for every r ∈ Rn.

For every r ∈ Rn\Rn−1, by using (32), it is straighforward to prove that h ⊲ ϕ (r) = ϕ (hr) .
Moreover, by applying (1), (30), the definition of πG and (32), we get that ρϕ (r) = (H ⊗ ϕ) ρ (r) .
Let us check that ϕ is a morphism of bialgebras in H

HYD. Fix r ∈ Rn\Rn−1.
Using the definition of ∆D, (1), (30), the definition of πG, the definition of σG, (32) and (1)

again, we obtain ∆Dϕ (r) = (ϕ⊗ ϕ)∆gr(R) (r) .
Let us check ϕ is counitary:

εDϕ (r) = εGϕ (r) = εG
(
r ⊗ 1H

) (2)
= δn,0εB (r ⊗ 1H)

= δn,0εR (r)
(2)
= εgr(R) (r) .

Let us check ϕ is multiplicative. Let s ∈ Rm\Rm−1. Then, by definition of ϕ, of mD and of the
multiplication of R#ξH, we have that

mD (ϕ⊗ ϕ) (s⊗ r) =
∑(

s(1)
((

s(2)
)
〈−1〉

r(1)
)
#ξ

((
s(2)
)
〈0〉

⊗ r(2)
))

+ (R#ξH)m+n−1 .

Now write
∑
s(1) ⊗ s(2) =

∑
0≤i≤m si ⊗ s′m−i for some si, s

′
i ∈ Ri and similarly

∑
r(1) ⊗ r(2) =∑

0≤j≤n rj ⊗ r′n−j for some rj , r
′
j ∈ Rj . Then

mD (ϕ⊗ ϕ) (s⊗ r) =
∑

0≤i≤m
0≤j≤n

(
si

((
s′m−i

)
〈−1〉

rj

)
#ξ
((
s′m−i

)
〈0〉

⊗ r′n−j

))
+ (R#ξH)m+n−1

=
∑

0≤i≤m
0≤j≤n

δi,mδj,n

(
si

((
s′m−i

)
〈−1〉

rj

)
#ξ
((
s′m−i

)
〈0〉

⊗ r′n−j

))
+ (R#ξH)m+n−1

=
∑(

sm

(
(s′0)〈−1〉 rn

)
#ξ
(
(s′0)〈0〉 ⊗ r′0

))
+ (R#ξH)m+n−1

R0=k1R=
∑

sm

(
(s′0)〈−1〉 rn

)
#εR

(
(s′0)〈0〉

)
εR (r′0) 1H + (R#ξH)m+n−1
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=
∑

smεR (s′0) rnεR (r′0)#1H + (R#ξH)m+n−1

=
∑

0≤i≤m
0≤j≤n

δi,mδj,n
(
siεR

(
s′m−i

)
rjεR

(
r′m−j

)
#1H

)
+ (R#ξH)m+n−1

=
∑

0≤i≤m
0≤j≤n

(
siεR

(
s′m−i

)
rjεR

(
r′m−j

)
#1H

)
+ (R#ξH)m+n−1

=
∑(

s(1)εR

(
s(2)
)
r(1)εR

(
r(2)
)
#1H

)
+ (R#ξH)m+n−1

= (sr#1H) + (R#ξH)m+n−1

(32)
= ϕ (sr +Rm+n−1)

= ϕ ((s+Rm−1) (r +Rn−1)) = ϕmgr(R) (s⊗ r) .

Let us check ϕ is unitary. We have

ϕ
(
1gr(R)

)
= ϕ (1R +R−1) = ϕ

(
1R
)
= 1R ⊗ 1H = (1R ⊗ 1H) + (R#ξH)−1 = 1B +B−1 = 1G.

�

Summing up we have proved that

gr (Q)
Q=Rv

= gr (Rv)
Lem. 5.1

∼= gr (R)
Pro. 5.5

∼= D (R#ξH)
Pro. 5.4

∼= D (A)

as bialgebras in H
HYD. Therefore H3

YD (D (A) , k) = 0 (the Hochschild cohomology in H
HYD of the

algebra D (A) with values in k) if, and only if, H3
YD (grQ, k) = 0. In this case, by the foregoing,

we get that Q is gauge equivalent to a connected bialgebra in H
HYD.

Now let E be a connected bialgebra in H
HYD and let γ : E ⊗ E → k be a gauge transformation

in H
HYD such that Q = Eγ . We proved that Aζ ∼= Q#H ∼= Eγ#H as coquasi-bialgebras. By

Proposition 2.5, we have that (E#H)
Γ
= Eγ#H as an ordinary coquasi-bialgebras. Recall that

two coquasi-bialgebras A and A′ are called gauge equivalent or quasi-isomorphic whenever
there is some gauge transformation γ : Q⊗Q→ k in Veck such that Aγ ∼= A′ as coquasi-bialgebras.
We point out that, if A and A′ are ordinary bialgebras and Aγ ∼= A′, then γ comes out to be a
unitary cocycle. This is encoded in the triviality of the reassociators of A and A′.

Theorem 5.6. Let A be a finite-dimensional Hopf algebra over a field k of characteristic zero
such that the coradical H of A is a sub-Hopf algebra (i.e. A has the dual Chevalley Property). If
H3

YD (D (A) , k) = 0, then A is quasi-isomorphic to the Radford-Majid bosonization E#H of some

connected bialgebra E in H
HYD by H. Moreover gr (E) ∼= D (A) as bialgebras in H

HYD.

Proof. By the foregoing Aζ ∼= Q#H ∼= Eγ#H = (E#H)
Γ

as coquasi-bialgebras. Now A is
quasi-isomorphic to Aζ which is quasi-isomorphic to E#H so that A is quasi-isomorphic to E#H.
Moreover

gr (E) = gr (Eγ) = gr (Q) ∼= D (A) .

where the first equality holds by Proposition 2.6.
�

More generally, given A a (finite-dimensional) Hopf algebra whose coradical H is a sub-Hopf
algebra, then if H is also semisimple, we expect that A is quasi-isomorphic to the Radford-Majid
bosonization E#H of some connected bialgebra E in H

HYD by H . See e.g. [GM, Corollary 3.4 and
the proof therein] and [AAGMV, AAG] for a further clue in this direction.

6. Examples

We notice that the Hochschild cohomology of a finite-dimensional Nichols algebras has been
computed in few examples. We consider here those Nichols algebras to compute H3

YD (B (V ) , k).
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6.1. Braidings of Cartan type. Let A = (aij)1≤i,j≤θ be a finite Cartan matrix, ∆ the corre-
sponding root system, (αi)1≤i≤θ a set of simple roots and W its Weyl group. Let w0 = si1 · · · siM
be a reduced expression of the element w0 ∈ W of maximal length as a product of simple reflec-
tions, βj = si1 · · · sij−1 (αij ), 1 ≤ j ≤ M . Then βj 6= βk if j 6= k and ∆+ = {βj |1 ≤ j ≤ M}, see
[H, page 25 and Proposition 3.6].

Let Γ be a finite abelian group, Γ̂ its group of characters. D = (Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, A) is a

datum of finite Cartan type [AS2] associated to Γ and A if gi ∈ Γ, χj ∈ Γ̂, 1 ≤ i, j ≤ θ, satisfy
χi(gi) 6= 1, χi(gj)χj(gi) = χi(gi)

aij for all i, j. Set q = (qij)1≤i,j≤θ , where qij = χj(gi).
In what follows V denotes the Yetter-Drinfeld module over kΓ, dim V = θ, with a fixed basis

x1, . . . , xθ, where the action and the coaction over each xi is given by χi and gi, respectively. Then
the associated braiding is c(xi ⊗ xj) = qijxj ⊗ xi for all i, j. Let Bq = B(V ). The tensor algebra

T (V ) is Nθ
0-graded with grading αi for each xi. For β =

∑θ
i=1 aiαi ∈ ∆+, set

gβ = ga1
1 · · · gaθ

θ , χβ = χa1
1 · · ·χaθ

θ , qβ = χβ(gβ).

Given α, β ∈ ∆+, we denote qαβ = χβ(gα).
We assume as in [AS2, MPSW] that the order of qii is odd for all i, and not divisible by 3 for

each connected component of the Dynkin diagram of A of type G2. Therefore the order of qii is the
same for all the i in the same connected component J . Given β ∈ J , we denote by Nβ the order
of the corresponding qii in J , which is also the order of qβ.

By [L] there exist homogeneous elements xβ of degree β, β ∈ ∆+, such that the Nichols algebra
Bq of V is presented by generators x1, . . . , xθ and relations

(adc xi)
1−aijxj = 0, 1 ≤ i 6= j ≤ θ;

x
Nβ

β = 0, β ∈ ∆+.

Moreover {xn1

β1
. . . xnM

βM
|0 ≤ ni < Nβi

} is a basis of Bq.

We shall prove that H3
YD (Bq, k) = 0. We need first some technical results.

Lemma 6.1. Let α, β ∈ ∆+. Then either gαg
Nβ

β 6= e, or else χαχ
Nβ

β 6= ǫ.

Proof. Suppose on the contrary that gαg
Nβ

β = e, χαχ
Nβ

β = ǫ. Then

qα = χ−1
α (g−1

α ) = χ
Nβ

β (g
Nβ

β ) = q
N2

β

β = 1,

since qβ is a root of unity of order Nβ . But this is a contradiction, since qα 6= 1. �

Lemma 6.2. Let α, β, γ ∈ ∆+ be pairwise different. Then either gαgβgγ 6= e, or else χαχβχγ 6= ǫ.

Proof. Suppose on the contrary that gαgβgγ = e and χαχβχγ = ǫ. Then

qα = χ−1
α (g−1

α ) = χβχγ(gβgγ) = qβqγqβγqγβ, qβ = qαqγqαγqγα, qγ = qαqβqαβqβα.(33)

Notice that α, β, γ belong to the same connected component. Indeed, if γ belongs to a different
connected component, then qβγqγβ = qαγqγα = 1. Thus qβ = qαqγ = qβq

2
γ , so q

2
γ = 1, which is a

contradiction. Therefore we may assume that the Dynkin diagram is connected.
One can prove that qsi(α) = qα for every α ∈ ∆. As we observed that ∆+ = {βj |1 ≤ j ≤ M},

we deduce that for every β ∈ ∆+ there is some j such that qβ = qj . One can prove that there is

some q ∈ k such that qα = q(α,α)/2 and qαγqγα = q(α,γ), where (·, ·) is the invariant bilinear form
on the simple Lie algebra g associated with the finite Cartan matrix [Bo, Ch. VI, §1, Proposition 3
and Definition 3] and the basis of the root systems given in [Bo, Ch. VI, §4] should be normalized
in such a way that q = qδ, (δ, δ) = 2 for each short root δ ∈ ∆. Note that qα = q(α,α)/2 6= 1 for all
α as (α, α) 6= 0. Thus

• qα = qβ = qγ = q if the Dynkin diagram is simply laced,
• qα, qβ , qγ ∈ {q, q2} if the Dynkin diagram has a double arrow,
• qα, qβ , qγ ∈ {q, q3} if the Dynkin diagram is of type G2.



COHOMOLOGY AND COQUASI-BIALGEBRAS IN THE CATEGORY OF YETTER-DRINFELD MODULES 27

If the Dynkin diagram is simply laced, then, by (33), we have qβγqγβ = qαγqγα = qαβqβα = q−1.

Then q(α,γ) = q−1. Now set n(α, β) := 2(α, β)/(β, β) = (α, β). Then n(α, β) is symmetric whence,
by [Bo, Ch. VI, §1, page 148] we have (α, γ) = −1 as the order of q is odd, so α + γ ∈ ∆+,
by [Bo, VI, §1, Corollary, page 149]. Now the same argument we used above shows that also
(α, β) = −1 = (γ, β) and hence (α + γ, β) = −2, so α + β + γ ∈ ∆+, since α+ γ 6= −β (as α + γ
and β are both in ∆+). But qα+β+γ = qαqβqγqβγqγβqαγqγαqαβqβα = 1, which is a contradiction.

If the Dynkin diagram has a double arrow, then qα, qβ , qγ ∈ {q, q2}. If qα = qβ = qγ , then
the proof follows as for the simply-laced case because n(u, v) = n(v, u) for u, v ∈ {α, β, γ}. If
qα = qβ = q and qγ = q2, then qβγqγβ = qαγqγα = q−2, and qαβqβα = 1, by (33). Then a simple
calculation yields (β, γ) = −2 so that β+γ ∈ ∆+. One also gets (α, β) = 0 and (α, γ) = −2 so that
(α, β+ γ) = (α, β)+ (α, γ) = −2 < 0 by the conditions on the order of q, so again α+β+ γ ∈ ∆+;
but again we obtain qα+β+γ = 1, which is a contradiction. The proof for qα = qβ = q2 and qγ = q
follows analogously.

Finally, if the Dynkin diagram is of type G2, then a similar analysis gives a contradiction. �

For each 1 ≤ k ≤ M , set Bq(k) as the subspace of Bq spanned by {xn1

β1
. . . xnk

βk
|0 ≤ ni < Nβi

}.

By [DP] this gives an algebra filtration, and the graded algebra GrBq associated to this filtration
is presented by generators xβ , β ∈ ∆+, and relations

xβxγ = qβγxγxβ , x
Nβ

β = 0, β < γ ∈ ∆+.

In [MPSW] GrBq is viewed as an algebra in kΓ
kΓYD, which (as an algebra) is the Nichols algebra of

Cartan type A1×· · ·×A1, M copies, with action and coaction on xβ given by χβ , gβ, respectively.

By [MPSW, Theorem 4.1], H•(GrBq, k) is the algebra generated by ξβ, ηβ , β ∈ ∆+, where
deg ξβ = 2, deg ηβ = 1, and relations

ξβξγ = q
NβNγ

βγ ξγξβ, ηβξγ = q
Nγ

βγ ξγηβ , ηβηγ = −qβγηγηβ , β, γ ∈ ∆+.

As we assume that all the qii have odd order, we deduce in particular from the last equality that

η2β = 0 for all β ∈ ∆+. As an algebra in kΓ
kΓYD, the action and coaction on ξβ is given by χ

−Nβ

β ,

g
−Nβ

β , while the action and coaction on ηβ is given by χ−1
β , g−1

β .

Theorem 6.3. H3
YD (Bq, k) = 0.

Proof. First we will prove that H3 (GrBq, k)
D

= 0 for D := D(kΓ). Now, the invariants are with
respect to the D-bimodule structure that H3 (GrBq, k) inherits from Hom

(
(GrBq)

⊗3, k
)
(this is

a D-bimodule as its arguments are left D-modules). Since the left D-module structure is induced
by the one of k, it is trivial. Thus the invariants of H3 (GrBq, k) as a D-bimodule reduce to the
its invariants as a right D-module. Since right D-modules are equivalent to left D-modules, via
the antipode of D which is invertible as D is finite-dimensional, the right D-module structure of
H3 (GrBq, k) becomes the structure of object in kΓ

kΓYD described above. Thus, in order to prove

that H3 (GrBq, k)
D

= 0 we just have to check that the invariants of H3 (GrBq, k) as a left-left
Yetter-Drinfeld modules are zero.

Now, by the defining relations of H•(GrBq, k), a basis B of H3(GrBq, k) is given by {ξαηβ} ∪

{ηαηβηγ |α < β < γ}. If v ∈ H3(GrBq, k) is invariant, then v is written as a linear combination of
elements in the trivial component. Indeed, write v =

∑
b∈B cb b for some cb ∈ k, and let gb, χb be

the elements describing the component of b ∈ B. Then

v = g · v =
∑

b∈B
cb g · b =

∑
b∈B

cbχb(g) b, for all g ∈ Γ,

1⊗ v = ρ(v) =
∑

b∈B
cb ρ · b =

∑
b∈B

cbgb ⊗ b.

If cb 6= 0, then χb(g) = 1 for all g ∈ Γ so χb = ǫ, and gb = 1. Thus b is invariant. We have so
proved that the existence of v 6= 0 invariant implies the existence of b ∈ B invariant. Hence, if B
has no invariant element then there is no invariant element at all. Note that, for all h ∈ H , we have
h·(ξαηβ) = (χ−Nα

α χ−1
β )(h)ξαηβ and ρ(ξαηβ) = g−Nα

α g−1
β ⊗ξαηβ so that, by Lemma 6.1, the element
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ξαηβ is not D-invariant. A similar argument, using Lemma 6.2, shows that also ηαηβηγ is not D-

invariant. Thus the elements in B are notD-invariant, so H3 (GrBq, k)
D

= 0. Since the elements in
{xn1

β1
. . . xnk

βk
|0 ≤ ni < Nβi

} are eigenvectors for D, we can mimic the argument in [MPSW, Section

5] by taking into account the spectral sequence associated to the filtration of algebras therein; see for

example [MPSW, Corollary 5.5] for a similar argument. Thus H3
YD (Bq, k) ∼= H3 (Bq, k)

D
= 0. �

Remark 6.4. Notice that H3
YD (Bq, k) ∼= H3 (Bq, k)

D(kΓ) = 0 although H3 (Bq#kΓ, k) ∼= H3 (Bq, k)
Γ

can be non-trivial, see for example [MPSW, Example 5.8].

6.2. Braidings of non-diagonal type. For n ≥ 3, FKn denotes the quadratic algebra [FK] with
a presentation by generators x(ij), 1 ≤ i < j ≤ n, and relations

x2(ij) = 0, 1 ≤ i < j ≤ n,

x(ij)x(jk) = x(jk)x(ik) + x(ik)x(ij), 1 ≤ i < j < k ≤ n,

x(jk)x(ij) = x(ik)x(jk) + x(ij)x(ik), 1 ≤ i < j < k ≤ n,

x(ij)x(kl) = x(kl)x(ij), #{i, j, k, l} = 4.

According to [MiS] each FKn is a graded bialgebra in the category of Yetter-Drinfeld modules over
the symmetric group Sn, generated as an algebra by the vector space Vn with basis {x(ij) | 1 ≤
i < j ≤ n}. The action is described by identifying (ij) with the corresponding transposition in Sn

and then consider the conjugation twisted by the sign, while the coaction is given by declaring xσ
a homogeneous element of degree σ. Then the braiding on Vn becomes

c(xσ ⊗ xτ ) = χ(σ, τ )xστσ−1 ⊗ xσ, χ(σ, τ ) =

{
1 σ(i) < σ(j), τ = (ij), i < j,

−1 otherwise,

where σ and τ are transpositions. Moreover FKn projects onto the Nichols algebra B(Vn). For
n = 3, 4, 5, it is known that FKn = B(Vn) and has dimension, respectively, 12, 576 and 8294400.

The Hochschild cohomology of FK3 is a consequence of the results in [SV] as follows.

Theorem 6.5. H•
kS3-Mod (FK3, k) is isomorphic to the graded algebra

k[X,U, V ]/(U2V − V U2), where degU = deg V = 2, degX = 4.

Proof. By [SV, Theorem 4.19], we have that E(B#kS3) is isomorphic to the algebra in the claim,
where B = FK3. By [SV, Theorem 2.17], we know that E(B#kS3) ∼= E(B)kS3 as graded algebras.

As observed in Remark 4.2, we have that E(B) ∼= H• (B, k). By Remark 4.6, we have H• (B, k)kS3 ∼=
H•

kS3-Mod (FK3, k). �

From this result we get H3
kS3-Mod (FK3, k) = 0 so that, by Proposition 4.7 we conclude that

Corollary 6.6. H3
YD (FK3, k) = 0.
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