This contribution is devoted to assess the capability of a new upper-bound approach for the limit analysis of FRP-reinforced masonry arches by comparing it to both experimental tests and a number of existing numerical procedures. The approach is based on an idea previously presented by the Authors and relies on the representation of the geometry of both the arch and of FRP reinforcement through Non Uniform Rational B-Spline (NURBS) functions. This allows generating a rigid body assembly starting from the assigned geometry composed by very few elements which still provide an exact representation of the original shape. A homogenized kinematic formulation for the limit analysis of the obtained rigid blocks assembly is derived, which accounts for the main properties of masonry material. FRP material is included exploiting the Italian CNR Recommendations for the design of FRP based reinforcing interventions. The approach is capable of accurately predicting the load bearing capacity of masonry arches of arbitrary geometry, provided that the initial mesh is adjusted by means of a suitably devised Genetic Algorithm (GA) until the active interfaces among blocks (e.g. hinges) closely approximate the actual failure mechanism.

Fast and reliable limit analysis approach for the structural assessment of FRP-reinforced masonry arches

Chiozzi, A.
;
Milani, G.;Grillanda, N.;Tralli, A.
2017

Abstract

This contribution is devoted to assess the capability of a new upper-bound approach for the limit analysis of FRP-reinforced masonry arches by comparing it to both experimental tests and a number of existing numerical procedures. The approach is based on an idea previously presented by the Authors and relies on the representation of the geometry of both the arch and of FRP reinforcement through Non Uniform Rational B-Spline (NURBS) functions. This allows generating a rigid body assembly starting from the assigned geometry composed by very few elements which still provide an exact representation of the original shape. A homogenized kinematic formulation for the limit analysis of the obtained rigid blocks assembly is derived, which accounts for the main properties of masonry material. FRP material is included exploiting the Italian CNR Recommendations for the design of FRP based reinforcing interventions. The approach is capable of accurately predicting the load bearing capacity of masonry arches of arbitrary geometry, provided that the initial mesh is adjusted by means of a suitably devised Genetic Algorithm (GA) until the active interfaces among blocks (e.g. hinges) closely approximate the actual failure mechanism.
9783035711646
FRP, Limit analysis, Masonry, Masonry arches, NURBS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2377342
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact