Nanocrystalline WO3 absorbs visible light up to 470 nm and generates OH•radicals via valence bandinjection. Therefore, it promotes the OH•mediated oxidation of organic pollutants, when applied tothe near UV–vis photodegradation of environmentally relevant target molecules like atenolol and car-bamazepine. They both represent potentially hazardous recalcitrant contaminants of emerging concern(CEC) in waters. In the case of WO3electrodes, a considerable acceleration of the degradation kinetics (upto 4–5 times) occurs through the application of a 1.5 V potential bias, which is instrumental to optimize thecharge separation within the thin films and to maximize holes transfer rate to the electrolyte. Moreover,after sufficiently long irradiation, the complete mineralization of the organics is obtained. Interestingly,the photo-electrochemical degradation process (applied bias condition) maintains its effectiveness anda large efficiency margin over conventional open circuit conditions. Photoelectrocatalysis is observedeven in diluted supporting electrolyte conditions, representing the average salinity of natural freshwatersamples, demonstrating the advantageous practical feasibility of the photo-electrochemical approach.

Photoelectrochemical mineralization of emerging contaminants at porous WO3 interfaces

LONGOBUCCO, Gelsomina
Primo
;
PASTI, Luisa
Secondo
;
MOLINARI, Alessandra;MARCHETTI, Nicola;CARAMORI, Stefano
;
CRISTINO, Vito;BOARETTO, Rita
Penultimo
;
BIGNOZZI, Carlo Alberto
Ultimo
2017

Abstract

Nanocrystalline WO3 absorbs visible light up to 470 nm and generates OH•radicals via valence bandinjection. Therefore, it promotes the OH•mediated oxidation of organic pollutants, when applied tothe near UV–vis photodegradation of environmentally relevant target molecules like atenolol and car-bamazepine. They both represent potentially hazardous recalcitrant contaminants of emerging concern(CEC) in waters. In the case of WO3electrodes, a considerable acceleration of the degradation kinetics (upto 4–5 times) occurs through the application of a 1.5 V potential bias, which is instrumental to optimize thecharge separation within the thin films and to maximize holes transfer rate to the electrolyte. Moreover,after sufficiently long irradiation, the complete mineralization of the organics is obtained. Interestingly,the photo-electrochemical degradation process (applied bias condition) maintains its effectiveness anda large efficiency margin over conventional open circuit conditions. Photoelectrocatalysis is observedeven in diluted supporting electrolyte conditions, representing the average salinity of natural freshwatersamples, demonstrating the advantageous practical feasibility of the photo-electrochemical approach.
2017
Longobucco, Gelsomina; Pasti, Luisa; Molinari, Alessandra; Marchetti, Nicola; Caramori, Stefano; Cristino, Vito; Boaretto, Rita; Bignozzi, Carlo Alberto
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0926337316308657-main.pdf

solo gestori archivio

Descrizione: Full text ed
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11392-2363951_POSTPRINT_PASTI_LUISA.pdf

accesso aperto

Descrizione: Post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 729.09 kB
Formato Adobe PDF
729.09 kB Adobe PDF Visualizza/Apri
113292-2363951_pre-print_Molinari_Alessandra.pdf

accesso aperto

Descrizione: versione preprint
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 276.28 kB
Formato Adobe PDF
276.28 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2363951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 41
social impact