Ion pairs between porphyrin-type compounds have been successfully employed for spectral sensitization of semiconductor surfaces and for the preparation of collective binary ionic materials for photonic and (photo)catalytic applications. The understanding of the photophysical processes occurring within ion-paired porphyrin dimers is thus of remarkable importance for the optimization and improvement of such systems. Herein the ion-pair species formed between ZnTMePyP4+ (Zn1) or H2TMePyP4+ (H(2)1) and ZnTPPS4- (Zn2) or H2TPPS4-(H(2)2) in a variety of solvent mixtures are characterized and their photophysics thoroughly investigated by time-resolved techniques. In all the systems studied, very fast and efficient photoinduced charge separation is observed, with the cationic porphyrin being reduced and the anionic one oxidized. Interestingly, despite the very short charge separation distance, the lifetime for charge recombination, depending on the energy gap, can extend into the nanosecond time domain, showing great potential for the utilization of this molecular design within energy conversion schemes.

Photoinduced Charge Separation in Porphyrin Ion Pairs

NATALI, Mirco
Primo
;
SCANDOLA, Franco
Ultimo
2016

Abstract

Ion pairs between porphyrin-type compounds have been successfully employed for spectral sensitization of semiconductor surfaces and for the preparation of collective binary ionic materials for photonic and (photo)catalytic applications. The understanding of the photophysical processes occurring within ion-paired porphyrin dimers is thus of remarkable importance for the optimization and improvement of such systems. Herein the ion-pair species formed between ZnTMePyP4+ (Zn1) or H2TMePyP4+ (H(2)1) and ZnTPPS4- (Zn2) or H2TPPS4-(H(2)2) in a variety of solvent mixtures are characterized and their photophysics thoroughly investigated by time-resolved techniques. In all the systems studied, very fast and efficient photoinduced charge separation is observed, with the cationic porphyrin being reduced and the anionic one oxidized. Interestingly, despite the very short charge separation distance, the lifetime for charge recombination, depending on the energy gap, can extend into the nanosecond time domain, showing great potential for the utilization of this molecular design within energy conversion schemes.
File in questo prodotto:
File Dimensione Formato  
2016 - J. Phys. Chem. A.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2339864
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact