Significance: In all cells, the endoplasmic reticulum (ER) and mitochondria are physically connected to form junctions termed mitochondria-associated membranes ( MAMs). This subcellular compartment is under intense investigation because it represents a ‘‘hot spot’’ for the intracellular signaling of important pathways, including the synthesis of cholesterol and phospholipids, calcium homeostasis, and reactive oxygen species (ROS) generation and activity. Recent Advances: The advanced methods currently used to study this fascinating intracellular microdomain in detail have enabled the identification of the molecular composition of MAMs and their involvement within different physiopathological contexts. Critical Issues: Here, we review the knowledge regarding (i) MAMs composition in terms of protein composition, (ii) the relationship between MAMs and ROS, (iii) the involvement of MAMs in cell death programs with particular emphasis within the tumor context, (iv) the emerging role of MAMs during inflammation, and (v) the key role of MAMs alterations in selected neurological disorders. Future Directions: Whether alterations in MAMs represent a response to the disease pathogenesis or directly contribute to the disease has not yet been unequivocally established. In any case, the signaling at the MAMs represents a promising pharmacological target for several important human diseases.
Mitochondria-Associated Membranes: Composition, Molecular Mechanisms, and Physiopathological Implications
GIORGI, CarlottaPrimo
;MISSIROLI, SoniaSecondo
;PATERGNANI, Simone;PINTON, Paolo
Ultimo
2015
Abstract
Significance: In all cells, the endoplasmic reticulum (ER) and mitochondria are physically connected to form junctions termed mitochondria-associated membranes ( MAMs). This subcellular compartment is under intense investigation because it represents a ‘‘hot spot’’ for the intracellular signaling of important pathways, including the synthesis of cholesterol and phospholipids, calcium homeostasis, and reactive oxygen species (ROS) generation and activity. Recent Advances: The advanced methods currently used to study this fascinating intracellular microdomain in detail have enabled the identification of the molecular composition of MAMs and their involvement within different physiopathological contexts. Critical Issues: Here, we review the knowledge regarding (i) MAMs composition in terms of protein composition, (ii) the relationship between MAMs and ROS, (iii) the involvement of MAMs in cell death programs with particular emphasis within the tumor context, (iv) the emerging role of MAMs during inflammation, and (v) the key role of MAMs alterations in selected neurological disorders. Future Directions: Whether alterations in MAMs represent a response to the disease pathogenesis or directly contribute to the disease has not yet been unequivocally established. In any case, the signaling at the MAMs represents a promising pharmacological target for several important human diseases.File | Dimensione | Formato | |
---|---|---|---|
167.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
742.11 kB
Formato
Adobe PDF
|
742.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Mitochondria_associated_Membranes_MAMs_C.pdf
accesso aperto
Descrizione: post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
3.89 MB
Formato
Adobe PDF
|
3.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.