Efficient and sustainable exploitation of low-enthalpy geothermal energy relies on accurate representations of heat transfer processes in the subsurface. An analytical model, which provides such a representation by predicting the dynamics of thermal fields induced by shallow GHEs (ground heat exchangers), is derived. The model accounts for atmospheric temperature fluctuations at the ground surface, an arbitrary geometry of GHEs operating in time-varying heating/cooling modes, and anisotropy and uncertain spatio-temporal variability of thermal conductivity of the ambient soil. To validate the model, its predictions of a thermal field generated by a shallow flat-panel GHEs are compared with experimental data. This comparison demonstrates the model's ability to provide accurate fit-free predictions of soil-temperature fields generated by GHEs. The analysis presented shows that a single horizontal GHE may affect soil temperature by several degrees at distances on the order of 1 m. The volume of influence is expressed in terms of soil thermal properties. Such modeling predictions are invaluable for screening of potential sites and optimal design of geothermal systems consisting of multiple GHEs.

Temperature fields induced by geothermal devices

BOTTARELLI, Michele;DI FEDERICO, Vittorio;
2015

Abstract

Efficient and sustainable exploitation of low-enthalpy geothermal energy relies on accurate representations of heat transfer processes in the subsurface. An analytical model, which provides such a representation by predicting the dynamics of thermal fields induced by shallow GHEs (ground heat exchangers), is derived. The model accounts for atmospheric temperature fluctuations at the ground surface, an arbitrary geometry of GHEs operating in time-varying heating/cooling modes, and anisotropy and uncertain spatio-temporal variability of thermal conductivity of the ambient soil. To validate the model, its predictions of a thermal field generated by a shallow flat-panel GHEs are compared with experimental data. This comparison demonstrates the model's ability to provide accurate fit-free predictions of soil-temperature fields generated by GHEs. The analysis presented shows that a single horizontal GHE may affect soil temperature by several degrees at distances on the order of 1 m. The volume of influence is expressed in terms of soil thermal properties. Such modeling predictions are invaluable for screening of potential sites and optimal design of geothermal systems consisting of multiple GHEs.
2015
Ciriello, Valentina; Bottarelli, Michele; DI FEDERICO, Vittorio; Tartakovsky, Daniel
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0360544215014206-main.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
preprint2333014.pdf

accesso aperto

Descrizione: versione preprint
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2333014
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact