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Abstract

Efficient and sustainable exploitation of low-enthalpy geothermal energy relies

on accurate representations of heat transfer processes in the subsurface. An

analytical model, which provides such a representation by predicting the dy-

namics of thermal fields induced by shallow ground heat exchangers (GHEs), is

derived. The model accounts for atmospheric temperature fluctuations at the

ground surface, an arbitrary geometry of GHEs operating in time-varying heat-

ing/cooling modes, and anisotropy and uncertain spatio-temporal variability of

thermal conductivity of the ambient soil. To validate the model, its predictions

of a thermal fields generated by a shallow flat-panel GHEs are compared with

experimental data. This comparison demonstrates the model’s ability to pro-

vide accurate fit-free predictions of soil-temperature fields generated by GHEs.

The analysis presented shows that a single horizontal GHE may affect soil tem-

perature by several degrees at distances on the order of one meter. The volume

of influence is expressed in terms of soil thermal properties. Such modeling

predictions are invaluable for screening of potential sites and optimal design of

geothermal systems consisting of multiple GHEs.
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1. Introduction

Atmospheric temperature fluctuations affect soil temperature at depths of

up to 20 m below the ground surface. Thermal inertia of this subsurface re-

gion induces both attenuation and time delay of surface temperature. As a

result, temperature of the subsurface is higher/lower than that of air during5

the cold/hot seasons. (At depths exceeding 20 m, subsurface temperature is

not affected by its atmospheric counterpart; it is controlled, instead, by the

geothermal gradient.) Ground heat exchangers (GHEs) exploit such differences

between air and soil temperatures for heating/cooling purposes [1]. Among

them, ground-coupled heat pump systems are regarded as a sustainable and10

cost-effective technology [2]. These systems couple a heat pump with the ground

via a closed loop through which a working fluid circulates; the heat exchange

with the ground occurs by means of GHEs (Figure 1), which are located either

vertically or horizontally at various depths [3]. Horizontal GHEs typically pro-

vide little energy, but are cheaper, more compliant with the environment, and15

easier to operate and maintain. In this configuration, the ground mainly serves

as a solar energy buffer [e.g., 4, 5, 6].

Success of any GHE ultimately depends upon the ambient soil temperature

field (STF) it generates. The latter is used as a key metric in designing GHEs

and assessing their effect on the subsurface environment. For example, a GHE20

used in the heating of a building might cool the ambient soil to the point at

which either the GHE operation becomes uneconomical or subsurface biological

processes become unsustainable. A shallow horizontal GHE can change soil

temperature by several degrees Celsius, with appreciable changes confined to

its neighborhood of radius on the order of one meter [7, 8]. The efficiency of25

such devices rests on one’s ability to optimize the surface available for heat

transfer and to reduce the mutual interference between exchangers. The former

venue was pursued by exploring various GHE geometries, including slinky coils,

radiators, and spirals [e.g., 9, and the references therein], as well as flat panels [7].

A flat-panel GHE affects larger volumes of the ambient soil than a radiator GHE30
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Figure 1: Left: Schematic representation of a ground-coupled heat pump system. Right:

shallow ground heat exchanger with a flat-panel geometry.

does, reducing soil-temperature oscillations. For the same surface of exchange,

a flat-panel GHE has lower thermal resistance, resulting in higher efficiency [7].

Regardless of the technology employed, quantification of energy that can be

either retrieved or stored in the subsurface requires an accurate estimation of the

ambient STF. This task is challenging due to STF’s sensitivity to atmospheric35

dynamics, soil heterogeneity, and spatio-temporal variability of soil water con-

tent [10, 11, 12, 13, 14]. Although it has been argued that soil heterogeneity

might play a minor role in the overall performance of shallow GHEs [15], the im-

pact of temporal variability of soil water content (e.g., due to infiltration and/or

evaporation) on the soil’s thermal properties and, hence, on the GHE perfor-40

mance is undeniable. Models that treat soil properties as constants have been

shown to yield inaccurate predictions of STFs, especially in shallow soils, [e.g.,

16, 11, 13]. The minimal model complexity that is necessary to describe the STF

dynamics is another potential source of error. While many studies [e.g., 17, 18]

rely on one-dimensional heat conduction equations to estimate vertical soil tem-45
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perature profiles under natural conditions, the presence of GHEs increases the

modeling complexity.

Here, a general mathematical framework is presented to analytically predict

the dynamics of the STFs induced by GHEs in ambient shallow soils. This

framework accounts for atmospheric temperature fluctuations at the ground50

surface, an arbitrary shape and number of GHEs, anisotropy of soil thermal

properties, and their spatial variability and spatio-temporal dependence on soil

water content. Temporal fluctuations of both surface temperature and soil ther-

mal diffusivity are handled exactly; uncertainty due to spatial variability of soil

thermal diffusivity is tackled by employing the effective medium theory [e.g.,55

19, and the references therein]. This formulation significantly extends the range

of predictive analytical models available in the field. It can be employed for a

screening-level assessment of potential geothermal sites and for verification of

numerical codes.

Section 2 provides a model formulation, including modeling assumptions.60

A general three-dimensional analytical solution of this problem and its (two-

dimensional) application to horizontal flat-panel GHEs are presented in Sec-

tion 3. In Section 4, the model is validated by comparing its predictions of the

STF with the experimental data collected at a field in the vicinity of Ferrara,

Italy. Section 5 demonstrates the model’s utility by forecasting the STF dynam-65

ics induced by operation of a single GHE used to meet the energy requirement

of a building during the cold season. A summary of the key findings is provided

in Section 6.

2. Model Formulation

The subsurface is treated as a semi-infinite domain, Ω = {x = (x1, x2, x3)> :

−∞ < x1, x2 < ∞, 0 ≤ x3 < ∞}, and a (possibly multi-connected) region

occupied by a GHE is denoted by E. A macroscopic (Darcy-scale) description

of subsurface temperature, T (x, t), at any “point” x and time t is provided by
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a heat conduction equation

ρc
∂T

∂t
= ∇ · (K∇T ) + g, t > 0, x ∈ Ω, (1)

where ρ, c and K are the average density, specific heat, and thermal conductivity70

of the soil, respectively; and g(x, t) represents the heat source generated by the

GHE, such that g(x, t) ≡ 0 for x /∈ E. The three soil parameters, ρ, c and

K, vary, to different degrees, in space and time due to soil heterogeneity and

changing water content [e.g., 13, and the references therein]. Soil anisotropy

gives rise to the thermal conductivity tensor K, whose principle components75

are aligned with the coordinate system, such that the off-diagonal components

of this tensor are Kij = 0 for i 6= j. Without loss of generality, we set K11 =

K22 = Kh and K33 = Kv, where Kh and Kv are the horizontal and vertical

thermal conductivities, respectively.

Equation (1) is subject to an initial condition

T (x, 0) = Tm, (2)

where Tm is the average temperature of soil in the stable layer; it is commonly set

to the average temperature of air [4, 20]. This temperature varies in response

to atmospheric fluctuations at the ground surface (x3 = 0), which manifest

themselves through a boundary condition

T (x1, x2, 0, t) = Tm −A cos (ωt) . (3a)

Here ω = 2π/365 is the fluctuation frequency, with time t expressed in Julian

days; and A denotes the yearly amplitude of thermal oscillations at the ground

surface. Ground temperature fluctuations do not affect the soil temperature far

below the ground surface, which gives rise to a boundary condition

T (x1, x2,∞, t) = Tm. (3b)

To ensure that the temperature response to the localized sources remains finite,

a boundary condition

|T (x, t)| <∞, x2
1 + x2

2 →∞ (3c)

is imposed.80
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2.1. Modeling Assumptions

The following assumptions facilitate the subsequent derivation of analytical

solutions of the boundary-value problem (1)–(3).

1. Soil heterogeneity and spatial variation of water content affect primarily

the soil’s thermal conductivity; all the parameters change with time, ρ =85

ρ(t), c = c(t) and K = K(x, t).

2. Available measurements of thermal diffusivity tensor κ ≡ K/(ρc) are suffi-

cient to reliably estimate its sample statistics (mean, variance, and correla-

tion function); the ergodicity hypothesis holds, allowing one to interchange

these spatial statistics for their ensemble counterparts.90

3. Spatial variability of thermal diffusivity tensor κ is small, such that the

variance of the logarithm of its largest component, k = ln(max{κh, κv}),
is σ2

k < 1.

4. Thermal gradients, |∇T |, are sufficiently smooth in the mean (vary slowly

in space and time) to allow for localization of the otherwise nonlocal95

(integro-differential) equations governing the (ensemble) average dynamics

of the STF 〈T (x, t)〉.

2.2. Problem Transformation

Assumption 1 enables one to rewrite (1) in terms of the thermal diffusivity

tensor κ(x, t),

∂T

∂t
= ∇ · (κ∇T ) + f, t > 0, x ∈ Ω, (4)

where f(x, t) ≡ g/(ρc).
Heterogeneity of the subsurface environment, combined with limited infor-

mation about spatio-temporal variability water content and, hence, the ther-

mal diffusivity κ, renders the latter uncertain. This uncertainty is commonly

quantified by treating such input parameters as random fields, whose ensemble

statistics are inferred from spatial data (Assumption 2) [e.g., 21, and the refer-

ences therein]. Given uncertainty in κ, the best estimate of the STF is given
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by the ensemble mean temperature 〈T (x, t)〉. Under Assumptions 3 and 4, the

latter satisfies an equation

∂〈T 〉
∂t

= ∇ · (κeff∇〈T 〉) + f, t > 0, x ∈ Ω, (5)

which is obtained by stochastic averaging of (4) [19, 22]. The time-dependent100

effective thermal conductivity tensor, κeff(t), is expressed in terms of the known

statistics of κ(x, t), i.e., its mean, variance, and correlation function (see Equa-

tions 13 and 14 in [19]).

The effective thermal conductivity tensor is expressed as the product κeff(t) =

α(t)κe, where the dimensionless function α(t) quantifies the temporal variabil-

ity of the effective (averaged) thermal conductivity due to spatially averaged

changes in water content; and κe is the instantaneous thermal conductivity ten-

sor. The off-diagonal components of this tensor are κe
ij = 0 for i 6= j, and

κe
11 = κe

22 = κe
h and κ33 = κe

v, where κe
h and κe

v are the instantaneous average

horizontal and vertical thermal diffusivity, respectively. The term “instanta-

neous” refers to the values of κe
h and κe

v for a given value of water content.

Then the change of coordinates

x̃1 = x1

√
κ̃

κe
h

, x̃2 = x2

√
κ̃

κe
h

and x̃3 = x3

√
κ̃

κe
v

(6)

transforms (5) into

∂〈T 〉
∂t

= α(t)κ̃∇̃2〈T 〉+ f, t > 0, x̃ ∈ Ω, (7)

where κ̃ =
√
κe
hκ

e
v is the geometric mean of the thermal diffusivity, ∇̃2 denotes

the Laplacian operator in the x̃ coordinate system, and f(x̃, t) vanishes outside

the transformed domain Ẽ occupied by the GHE. Finally, a new time variable,

t̃ =

∫ t

0

α(τ)dτ, (8)

is introduced to transform (7) into a heat conduction equation with constant

thermal diffusivity κ̃,

∂〈T 〉
∂t̃

= κ̃∇̃2〈T 〉+ f̃(x̃, t̃), t̃ > 0, x̃ ∈ Ω, (9)
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where f̃(x̃, t̃) ≡ f(x̃, t)/α(t).

To sum up, equation (9), subject to the transformed initial and boundary105

conditions, provides the best estimate of the STF induced by a GHE operating

in a soil with uncertain thermal diffusivity. If the thermal diffusivity is spatially

uniform and known with certainty, this boundary-value problem describes a

unique STF, rather then its estimate, i.e., T ≡ 〈T 〉. Also, no transformation of

coordinates is necessary if the medium is isotropic and the thermal diffusivity110

does not change with time. In the following, we drop the tilde and 〈·〉 to simplify

the notation.

2.3. Example of Flat-Panel GHEs

A GHE composed of N identical flat panels of height h provides an example

of the otherwise general source term f(x, t) and GHE shape E. The panels are115

buried at depth x3 = d at locations (x1 = ξi, x2 = ζi), where i = 1 . . . , N . In

a typical GHE, the flat panels are elongated and combined in a series to form

a line. This allows one to adopt a two-dimensional representation of the heat

exchange between the devices and the surrounding soil. This fact is emphasized

by using the notation x = x1 and z = x3 (Figure 2).120

z

d

d + h

q0(t)

x2

FP1 FP2

v3

x ⌘ x1

x

v6

1.41 m

0.56 m

Figure 2: Vertical (left) and horizontal (right) cross-sections of the subsurface with a GHE

composed of flat panels. The horizontal cross-section exhibits two flat panels and two sensors,

v3 and v6, located at depths z = 2.03 and 2.57 m, respectively. Soil-temperature measure-

ments provided by these sensors are used for model validation.

Let q0(t) denote the heat flux (heat power per unit surface) prescribed on

each panel of the GHE, which operates during a time interval [t0, t1]. Then, the
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source term in (9) takes the form

f(x, z, t) =
κ

K
I(x, z)q0(t)H(t− t0)H(t1 − t), (10a)

where the indicator (or membership) function I(x, z) is defined by

I(x, z) = H(z − d)H(d+ h− z)
N∑
i=1

δ(x− ξi), (10b)

and δ(·) and H(·) are the Dirac delta and Heaviside functions, respectively. The

time-dependence of the heat flux q0 accounts for operating conditions, in which

GHEs may start and stop working several times per hour and the operating

period may vary significantly from day to day. This happens because the heat

flux is controlled by a ground-coupled heat pump, which operates in order to125

assure a target indoor temperature of building. In this sense, the heat flux is

linked to the temperature fluctuations at the ground surface [20]. This behavior

is represented by considering the operation of GHEs to be piece-wise constant

during each day, so that t0 and t1 are expressed in Julian days. A different value

of heat flux is assigned to each day, given by the ratio between the total energy130

exchanged during that day and the effective operating period of the GHE. This

captures the system’s behavior at the daily scale.

3. Analytical Solutions

Green’s functions are used to derive a general three-dimensional solution

of (9) with an arbitrary source (GHE shape) and its two-dimensional counter-135

part corresponding to f in (10).

3.1. Arbitrarily Shaped GHE

A closed-form analytical expression for Green’s function G(x,x′, t − t′) for

the boundary-value problem (9), (2) and (3) is given by (A.2)–(A.4) of Appendix

A. The STF T (x, t) induced by a GHE of an arbitrary shape E is computed as

T = Tm − κA
t∫

0

cos (ωt′)

+∞∫∫
−∞

∂G

∂x′3
(·, x′3 = 0, ·)dx′1dx′2dt′ +

t∫
0

∫
E

f(x′, t′)Gdx′dt′.

(11)
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This reduces the problem of estimating the STF T (x, t) to a straightforward

computation of the quadratures, which can be done either analytically or nu-

merically.140

Setting f ≡ 0 in (11) and computing the remaining quadratures gives the

natural soil temperature profile at large times (Appendix A),

Tnat(x3, t) = Tm −A e−ax3 cos(ωt− ax3), a =

√
ω

2κ
. (12)

This solution is routinely used to represent the impact on thermal fluctuations

at the ground surface on soil temperature [4, 20].

3.2. Flat-panel GHE

A temperature field induced by the flat-panel GHE with f(x, t) in (10) is

obtained from (11) as

T (x, z, t) = Tnat(z, t) +
1

4K

√
κ

π

N∑
i=1

Ti(x, z, t) (13a)

where

Ti =

t∫
t0

q0(τ)√
t− τ exp

[
− (x− ξi)2

4κ(t− τ)

] 4∑
j=1

νjerf

(
ψj

2
√
κ(t− τ)

)
dτ, (13b)

and ν1 = ν4 = 1, ν2 = ν3 = −1, ψ1 = d + z, ψ2 = d − z, ψ3 = d + z + h,

ψ4 = d − z + h. Recall that to emphasize the two-dimensional nature of the

STF the coordinates are relabeled as x ≡ x1 and z ≡ x3. If the GHE is operated

by keeping the heat flux constant in any given day, i.e., by treating q0(t) is a

step function at the daily scale, the contribution of the ith panel is

Ti =

t−t0−1∑
k=0

q0(t0 + k)

t−t0−k∫
t−t0−k−1

exp

[
− (x− ξi)2

4κτ

] 4∑
j=1

νjerf

(
ψj

2
√
κτ

)
dτ√
τ
. (14)

4. Model Validation

The experimental data collected at a field site of the Department of Ar-145

chitecture, University of Ferrara (Italy) are used to validate these analytical
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models. A detailed description of the GHE design and operations is provided

in [23]. Its brief summary is provided below. The laboratory tests identified the

following soil properties: porosity 0.36, bulk soil density ρ = 1720 kg/m3, bulk

specific heat c = 1950 J/kg/K. The GHE consists of two (polypropylene) flat150

panels, each of which is 3 m long, h = 1 m wide, and 4 mm thick. The panels

were placed 20 mm apart, forming a 6.02 m long GHE buried at d = 0.8 m

below the ground. The panels were backfilled with sieved soil, and a dedicated

drainage/irrigation system was laid over them to control soil moisture. Two

digital probes measuring ground temperature, named v3 and v6 in Figure 2,155

were placed at depths z = 2.03 m and 2.57 m, respectively. Both the GHE size

and the location of these sensors relative to the GHE are consistent with the

two-dimensional solution (13).

A weather station at the field site recorded, among other atmospheric char-

acteristics, the air temperature close to the ground surface and the soil temper-160

ature at depths z = 0.15, 0.80, 2.50, 4.20 m. Fitting the boundary condition (3)

to the air temperature data from 2014 yields A = 10.8 ◦C and Tm = 16.3 ◦C.

Fitting (12) to the soil temperature data collected during two months in 2014

yields the value of thermal diffusivity κ = 4.41× 10−7 m2/s. The predicted and

observed natural soil temperature profiles are shown in Figure 3.165

Depth z = 0.15 m Depth z = 0.80 m Depth z = 2.50 m
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Model prediction
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Model prediction
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Figure 3: Predicted and observed natural (undisturbed) soil temperature (◦C). Measurements

are collected by the surface monitoring stations at depths z = 0.15, 0.80 and 2.50 m, from

November 29, 2013 (333 Julian days) to October 28, 2014 (666 Julian days). The predictions

are provided by equation (12).

With the soil thermal properties thus determined, the solution (13) provides
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a fit-free prediction of the STF generated by the GHE. Figure 4 provides a

comparison of this prediction with the soil temperature recorded by the sensors

v3 and v6 from June 21, 2014 to September 8, 2014. During this time inter-

val the flat panels were operating in the heating mode (i.e., heating the soil170

for cooling purposes) with the average heat flux q0 = 35 W/m2. The points

are clustered around the 45◦ line, and their spread is virtually negligible. This

demonstrates the accuracy of our modeling predictions, thus validating the an-

alytical model (13).

Sensor v3 Sensor v6

P
re

d
ic

te
d

T
,
[�

C
]

P
re

d
ic

te
d

T
,
[�

C
]
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Figure 4: Comparison of the predicted and observed soil temperatures (◦C). The measure-

ments are collected by the sensors v3 (first panel) and v6 (second panel), from June 21, 2014

(172 Julian days) to September 8, 2014 (251 Julian days). The predictions are given by

equation (12) for the same time period.

5. Model Forecasting175

We use the model to predict the dynamics of the STF induced by the GHE’s

operation during the cold season, i.e., within the time interval [t0 = 275 day, t1 =

485 day] or October through April. The values of q0(t) for each day included

in this time interval are deduced from the thermal energy needed to maintain a

building’s indoor temperature between 20 ◦C and 25 ◦C. The energy require-180

ment is related to the air temperature fluctuations, assumed to be equal to the

temperature at the ground surface [see 6, for details]. Figure 5a exhibits the

hourly air temperature at the ground surface, its representation with the surface
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thermal wave (3), and the indoor building temperature. Figure 5b shows the

the corresponding heat flux q0 estimated in [6].185
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Figure 5: (a) Hourly temperature fluctuations at the ground surface, approximated surface

thermal wave (as prescribed in [20]), and indoor building temperature for year 2014. (b) The

corresponding heat flux q0(t) exchanged by the GHE and ambient soil during the same year.

These values of the heat flux q0 are used in (13) and (14) to predict the

STF, whose temporal snapshots (at t = 405, 485 and 505 days) are displayed in

Figure 6, together with their natural (undisturbed) counterparts. The minimum

soil temperature, recorded at t = 405 days, is T ≈ −0.5 ◦C near the GHE at

depth z = 0.9 m. This is due to the soil’s delayed response response to the most190

critical ground temperature and to the consequent maximum energy exchanged

by the GHE to reach the required indoor building temperature. At t = 405

days, the GHE has the the largest effect on soil temperature (T = −10 ◦C) at

depth z = 1.1 m; this effect decays rapidly with the distance from the GHE,

becoming virtually negligible at depth z = 0.5 m. In the end of the heating195

period (t = 485 days), the GHE influence diminishes, reaching a maximum of

T = −3.5 ◦C at depth z = 1.2 m. This diminished effect is to be expected,

since the ground-surface temperature is higher and the energy requirement is

smaller. The minimum temperature, T ≈ 10.5 ◦C, is predicted to occur at

depth z = 1.4 m, close to the GHE. The impact of the GHE decreases further200

at t = 505 days, reaching a maximum of T = −1.5 ◦C at depth z = 2.3 m and

becoming negligible away from the GHE. The minimum of the STF in this case,
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T = 13.0 ◦C, is reached at depth z = 2.7 m.

6. Summary

We derived analytical models of the soil temperature induced by shallow205

GHEs. Our modeling framework accounts for atmospheric temperature fluctua-

tions at the ground surface, an arbitrary shape and number of GHEs, anisotropy

of soil thermal properties, and their spatial variability and spatio-temporal de-

pendence on soil water content. Temporal fluctuations of both the surface tem-

perature and soil thermal diffusivity are handled exactly; uncertainty due to210

spatial variability of soil thermal diffusivity is tackled by employing the effec-

tive medium theory. Our model facilitates both the design of shallow geothermal

systems and the assessment of their compliance with environmental regulations.

We validated our model by comparing its predictions of the soil thermal

field (STF) induced by a shallow flat-panel GHE with the experimental data.215

Then, we used this model to investigate how the STF may be affected by the

GHE’s operation aimed at maintaining a building indoor temperature above

20 ◦C during the cold season. This is significant since soil cooling may lead to

low temperatures that are not adequate for both the environment and GHEs

operation. We quantified the time evolution of the thermal perturbations in-220

duced by the GHE and assessed the volumes of soil affected by its operation.

Our analysis suggests that a single horizontal GHE may change the soil temper-

ature by several degrees in the neighborhood of up to one meter. The volume

of influence is expressed in terms of soil thermal properties. This analysis is

relevant for design of geothermal systems consisting of several GHEs, in order225

to avoid negative mutual interferences among the devices.
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Appendix A. Derivation of Analytical Solutions

The Green’s function G(x,x′, t− t′) satisfies

∂G

∂t′
= κ∇2G+ δ(x− x′)δ(t− t′), (A.1)

subject to the homogeneous versions of the initial and boundary conditions (2)

and (3). It is computed as the product of the corresponding one-dimensional

Green’s function,

G(x,x′, t− t′) =

3∏
i=1

Gxi
(xi, x

′
i, t− t′). (A.2)

The one-dimensional Green’s functions in the x1 and x2 directions are iden-

tical since they are defined on the infinite domain xi ∈ (−∞,+∞). They are

given by [e.g., 24, page 353]

Gxi(xi, x
′
i, t− τ) =

1

2
√
πκ(t− τ)

exp

[
− (xi − x′i)2

4κ(t− τ)

]
, i = 1, 2. (A.3)

The one-dimensional Green’s function in the x3 direction is defined on the semi-

infinite domain x3 ∈ [0,+∞). It is given by [e.g., 24, page 357]

Gx3
(x3, x

′
3, t− τ) =

1

2
√
πκ(t− τ)

{
exp

[
− (x3 − x′3)2

4κ(t− τ)

]
− exp

[
− (x3 + x′3)2

4κ(t− τ)

]}
.

(A.4)

Substituting (A.2)–(A.4) into (11) with f ≡ 0 gives the natural temperature

profile in the subsurface. The spatial integrals of the Green’s function equal

unity, so that (11) with f ≡ 0 gives rise to

T (x, z, t) = Tm −
Az

2
√
πκ

t∫
0

cos(ωt′)

(t− t′)3/2
exp

[
− z2

4κ(t− t′)

]
dt′. (A.5)

A change of integration variable, µ = z/
√
κ(t− t′), yields

T (x, t) = Tm−A e−az cos(ωt−az)− A√
π

z/
√
κt∫

0

cos

(
ωt− 2

a2z2

µ2

)
e−µ

2/4dµ, (A.6)
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where a =
√
ω/(2κ). The integral in (A.6) represents the transition from the

initial state. It tends to zero t increases. This leads to (12).
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