Gallium nitride high electron-mobility transistors have gained much interest for high-power and high-temperature applications at high frequencies. Therefore, there is a need to have the dependence on the temperature included in their models. To meet this challenge, the present study presents a neural approach for extracting a multi-bias model of a gallium nitride high electron-mobility transistors including the dependence on the ambient temperature. Accuracy of the developed model is verified by comparing modeling results with measurements.

Neural approach for temperature-dependent modeling of GaN HEMTs

RAFFO, Antonio;VANNINI, Giorgio
Penultimo
;
2015

Abstract

Gallium nitride high electron-mobility transistors have gained much interest for high-power and high-temperature applications at high frequencies. Therefore, there is a need to have the dependence on the temperature included in their models. To meet this challenge, the present study presents a neural approach for extracting a multi-bias model of a gallium nitride high electron-mobility transistors including the dependence on the ambient temperature. Accuracy of the developed model is verified by comparing modeling results with measurements.
2015
Marinković, Zlatica; Crupi, Giovanni; Caddemi, Alina; Avolio, Gustavo; Raffo, Antonio; Marković, Vera; Vannini, Giorgio; Schreurs, Dominique M. M. P....espandi
File in questo prodotto:
File Dimensione Formato  
jnm.2011.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 962.27 kB
Formato Adobe PDF
962.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
IJNM_GaN_f_modified.pdf

accesso aperto

Descrizione: Post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 892.27 kB
Formato Adobe PDF
892.27 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2332507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 64
social impact