Interest in many-core architectures applied to real time selections is growing in High Energy Physics (HEP) experiments. In this paper we describe performance measurements of many-core devices when applied to a typical HEP online task: the selection of events based on the trajectories of charged particles. We use as benchmark a scaled-up version of the algorithm used at CDF experiment at Tevatron for online track reconstruction - the SVT algorithm - as a realistic test-case for low-latency trigger systems using new computing architectures for LHC experiment. We examine the complexity/performance trade-off in porting existing serial algorithms to many-core devices. We measure performance of different architectures (Intel Xeon Phi and AMD GPUs, in addition to NVidia GPUs) and different software environments (OpenCL, in addition to NVidia CUDA). Measurements of both data processing and data transfer latency are shown, considering different I/O strategies to/from the many-core devices.

Applications of many-core technologies to on-line event reconstruction in High Energy Physics experiments2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)

CORVO, Marco;
2013

Abstract

Interest in many-core architectures applied to real time selections is growing in High Energy Physics (HEP) experiments. In this paper we describe performance measurements of many-core devices when applied to a typical HEP online task: the selection of events based on the trajectories of charged particles. We use as benchmark a scaled-up version of the algorithm used at CDF experiment at Tevatron for online track reconstruction - the SVT algorithm - as a realistic test-case for low-latency trigger systems using new computing architectures for LHC experiment. We examine the complexity/performance trade-off in porting existing serial algorithms to many-core devices. We measure performance of different architectures (Intel Xeon Phi and AMD GPUs, in addition to NVidia GPUs) and different software environments (OpenCL, in addition to NVidia CUDA). Measurements of both data processing and data transfer latency are shown, considering different I/O strategies to/from the many-core devices.
2013
9781479905331
9781479905348
9781479934232
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2295816
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact