Artificial photosynthesis aims at efficient water splitting into hydrogen and oxygen, by exploiting solar light. As a priority requirement, this process entails the integration of suitable multi-electron catalysts with light absorbing units, where charge separation is generated in order to drive the catalytic routines. The final goal could be the transposition of such an asset into a photoelectrocatalytic cell, where the two half-reactions, proton reduction to hydrogen and water oxidation to oxygen, take place at two appropriately engineered photoelectrodes. We herein report a covalent approach to anchor a Co(II) water oxidation catalyst to a Ru(II) polypyridine photosensitizer unit; photophysical characterisation and the catalytic activity of such a dyad in a light activated cycle are reported, and implications for the development of regenerative systems are discussed

A Co(II)-Ru(II) dyad relevant to light-driven water oxidation catalysis

NATALI, Mirco;CHIORBOLI, Claudio;SCANDOLA, Franco
2014

Abstract

Artificial photosynthesis aims at efficient water splitting into hydrogen and oxygen, by exploiting solar light. As a priority requirement, this process entails the integration of suitable multi-electron catalysts with light absorbing units, where charge separation is generated in order to drive the catalytic routines. The final goal could be the transposition of such an asset into a photoelectrocatalytic cell, where the two half-reactions, proton reduction to hydrogen and water oxidation to oxygen, take place at two appropriately engineered photoelectrodes. We herein report a covalent approach to anchor a Co(II) water oxidation catalyst to a Ru(II) polypyridine photosensitizer unit; photophysical characterisation and the catalytic activity of such a dyad in a light activated cycle are reported, and implications for the development of regenerative systems are discussed
A., Montellano López; Natali, Mirco; E., Pizzolato; Chiorboli, Claudio; M., Bonchio; A., Sartorel; Scandola, Franco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2141612
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact