The jellyfish Aequorea victoria produces a 22-kDa protein named aequorin that has had an important role in the study of calcium (Ca(2+)) signaling. Aequorin reacts with Ca(2+) via oxidation of the prosthetic group, coelenterazine, which results in emission of light. This signal can be detected by using a special luminescence reader (called aequorinometer) or luminescence plate readers. Here we describe the main characteristics of aequorin as a Ca(2+) probe and how to measure Ca(2+) in different intracellular compartments of animal cells (cytosol, different mitochondrial districts, nucleus, endoplasmic reticulum (ER), Golgi apparatus, peroxisomes and subplasma-membrane cytosol), ranging from single-well analyses to high-throughput screening by transfecting animal cells using DNA vectors carrying recombinant aequorin chimeras. The use of aequorin mutants and modified versions of coelenterazione increases the range of calcium concentrations that can be recorded. Cell culture and transfection takes ∼3 d. An experiment including signal calibration and the subsequent analyses will take ∼1 d.

Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes.

BONORA, Massimo;GIORGI, Carlotta;BONONI, Angela;MARCHI, Saverio;PATERGNANI, Simone;RIMESSI, Alessandro;PINTON, Paolo
2013

Abstract

The jellyfish Aequorea victoria produces a 22-kDa protein named aequorin that has had an important role in the study of calcium (Ca(2+)) signaling. Aequorin reacts with Ca(2+) via oxidation of the prosthetic group, coelenterazine, which results in emission of light. This signal can be detected by using a special luminescence reader (called aequorinometer) or luminescence plate readers. Here we describe the main characteristics of aequorin as a Ca(2+) probe and how to measure Ca(2+) in different intracellular compartments of animal cells (cytosol, different mitochondrial districts, nucleus, endoplasmic reticulum (ER), Golgi apparatus, peroxisomes and subplasma-membrane cytosol), ranging from single-well analyses to high-throughput screening by transfecting animal cells using DNA vectors carrying recombinant aequorin chimeras. The use of aequorin mutants and modified versions of coelenterazione increases the range of calcium concentrations that can be recorded. Cell culture and transfection takes ∼3 d. An experiment including signal calibration and the subsequent analyses will take ∼1 d.
2013
Bonora, Massimo; Giorgi, Carlotta; Bononi, Angela; Marchi, Saverio; Patergnani, Simone; Rimessi, Alessandro; Rizzuto, R; Pinton, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1882325
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 133
  • ???jsp.display-item.citation.isi??? 130
social impact