The endoplasmic reticulum (ER) and mitochondria are tubular organelles with a characteristic "network structure" that facilitates the formation of interorganellar connections. The ER and mitochondria join together at multiple contact sites to form specific domains, termed mitochondria-associated membranes (MAMs), with distinct biochemical properties and a characteristic set of proteins. The functions of these two organelles are coordinated and executed at the ER-mitochondria interface, which provides a platform for the regulation of different processes. The roles played by the ER-mitochondria interface range from the coordination of calcium transfer to the regulation of mitochondrial fission and inflammasome formation as well as the provision of membranes for autophagy. The novel and unconventional processes that occur at the ER-mitochondria interface demonstrate its multifunctional and intrinsically dynamic nature. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.

The endoplasmic reticulum-mitochondria connection: One touch, multiple functions.

MARCHI, Saverio;PATERGNANI, Simone;PINTON, Paolo
2014

Abstract

The endoplasmic reticulum (ER) and mitochondria are tubular organelles with a characteristic "network structure" that facilitates the formation of interorganellar connections. The ER and mitochondria join together at multiple contact sites to form specific domains, termed mitochondria-associated membranes (MAMs), with distinct biochemical properties and a characteristic set of proteins. The functions of these two organelles are coordinated and executed at the ER-mitochondria interface, which provides a platform for the regulation of different processes. The roles played by the ER-mitochondria interface range from the coordination of calcium transfer to the regulation of mitochondrial fission and inflammasome formation as well as the provision of membranes for autophagy. The novel and unconventional processes that occur at the ER-mitochondria interface demonstrate its multifunctional and intrinsically dynamic nature. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
2014
Marchi, Saverio; Patergnani, Simone; Pinton, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1882324
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 372
  • ???jsp.display-item.citation.isi??? 350
social impact