We study the model equations of polytropic gas dynamics, which constitute a system of three hyperbolic conservation laws. Global in time BV-solutions were obtained by T.-P. Liu (Indiana Univ. Math. J.,1978) provided that $(gamma - 1)$ times the total variation of the initial data is sufficiently small; here $gamma$ is the adiabatic coefficient. The aim of this paper is to give an alternative proof by exploiting the Dafermos-Bressan-Risebro wave-front tracking scheme. An original feature is the use of the path decomposition method to obtain pathwise estimates of the approximate solutions; these estimates show the decay properties of the solutions and play a crucial role in proving the stability of the wave-front tracking scheme.

Wave-Front Tracking for the Equations of Non-Isentropic Gas Dynamics

CORLI, Andrea
2015

Abstract

We study the model equations of polytropic gas dynamics, which constitute a system of three hyperbolic conservation laws. Global in time BV-solutions were obtained by T.-P. Liu (Indiana Univ. Math. J.,1978) provided that $(gamma - 1)$ times the total variation of the initial data is sufficiently small; here $gamma$ is the adiabatic coefficient. The aim of this paper is to give an alternative proof by exploiting the Dafermos-Bressan-Risebro wave-front tracking scheme. An original feature is the use of the path decomposition method to obtain pathwise estimates of the approximate solutions; these estimates show the decay properties of the solutions and play a crucial role in proving the stability of the wave-front tracking scheme.
2015
F., Asakura; Corli, Andrea
File in questo prodotto:
File Dimensione Formato  
2013_Asakura-Corli_AMPA.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 280.38 kB
Formato Adobe PDF
280.38 kB Adobe PDF Visualizza/Apri
Asakura-Corli2015_Article_Wave-frontTrackingForTheEquati.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 544.94 kB
Formato Adobe PDF
544.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1876120
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact