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Abstract

We study the model equations of polytropic gas dynamics, which con-
stitute a system of three hyperbolic conservation laws. Global in time
BV-solutions were obtained by T.-P. Liu (Indiana Univ. Math. J., 1978)
provided that (γ − 1) times the total variation of the initial data is suffi-
ciently small; here γ is the adiabatic coefficient. The aim of this paper is
to give an alternative proof by exploiting the Dafermos-Bressan-Risebro
wave-front tracking scheme. An original feature is the use of the path de-
composition method to obtain pathwise estimates of the approximate solu-
tions; these estimates show the decay properties of the solutions and play
a crucial role in proving the stability of the wave-front tracking scheme.

1 Introduction

The equations of gas dynamics in one-space dimension are given in Lagrangian
coordinates by 

vt − ux = 0,
ut + px = 0,(
E+ 1

2u
2
)
t
+ (pu)x = 0,

(1.1)

for (x, t) ∈ R × R+. Here above u is the velocity, p the pressure, v the specific
volume and E the internal energy; p and v are positive quantities. Temperature
and entropy are denoted by Θ, S, respectively, and satisfy the first and second
law of thermodynamics: dE = ΘdS − pdv, [10]. The gas is assumed to be ideal ,
i.e., pv = RΘ, and polytropic: E = CvΘ+E0; here, R, Cv and E0 are constants.
As a consequence, the entropy S is expressed as

S = Cv (log p+ γ log v) + const,

where γ = 1 + R/Cv > 1. By setting E0 = − a2

γ−1 , so that E makes sense for
γ → 1, we have

E =
pv − a2

γ − 1
, p = a2v−γe

γ−1
R S .

In the limit case γ = 1 one has p = a2v−1 and E = a2(− log v+S/R); hence the
system (1.1) coincides with the equation of isothermal gas dynamics.
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We shall discuss the existence of solutions, defined globally in time, to the
initial value problem for the equations (1.1). The initial data are given by

(v, u, S)|t=0 =
(
v(x), u(x), S(x)

)
, (1.2)

with
v(x) ≥ v∗ > 0 (1.3)

and v, u, S ∈ BV(R), the space of functions having bounded total variation.
We denote by TV(f) the total variation of a function f ∈ BV(R).

If the total variation of the initial data is sufficiently small, then Glimm’s
existence theorem [11] applies for any γ ≥ 1 and guarantees the existence of
global solutions. Hence, the issue is to study the case of initial data whose total
variation is not necessarily small. The following results are by now classic.

Theorem 1.1 (Liu [15]). Assume 1 < γ ≤ 5
3 and (1.3). If (γ−1)TV(v, u, S) is

sufficiently small, then there exists a global in time BV-solution to (1.1)-(1.2).

Theorem 1.2 (Nishida [17]). Assume γ = 1 and (1.3). If the total variation
TV(v, u, S) of the initial data is finite, then there exists a global in time BV-
solution to (1.1)-(1.2).

Of course, if γ = 1 then the two first equations in (1.1) decouple from the
third one and the entropy S is computed by means of v and the initial data
S. Another celebrated paper, due to Nishida and Smoller [18], dealt previously
with the system of isentropic gas dynamics and a result analogous to Theorem
1.1 was proved. Later on, Temple [22] provided a different proof of Theorem
1.1, basing on the observation that the polytropic gas model 1 < γ ≤ 5

3 can be
treated as a perturbation of the isothermal model γ = 1. All of these results
were proved by exploiting the random choice method due to Glimm [11].

In recent years the wave-front tracking scheme, which was initiated by Dafer-
mos [8] for a single conservation laws and then developed by Bressan [6, 7], and
Risebro [19] for hyperbolic systems of conservation laws, has been proved a bet-
ter alternative to Glimm’s scheme. This approach has the following advantages:

• Free from random sampling;

• Based on simple interaction estimates;

• Useful in studying asymptotic properties;

• Appropriate for establishing the continuous dependence on the initial data.

The wave-front tracking scheme was successfully applied to the case of isen-
tropic gas dynamics by Asakura [3]. About continuous dependence both in the
isentropic case and for the full system (1.1) we also refer to [13].

This paper is the natural continuation of the analysis begun in Asakura [3].
Our main goal is to provide a proof to both theorems above by the front tracking
scheme. In doing this, a difficult issue is the control of the total variation of
the approximate solutions; to this end we exploit a rather new technique, the
path decomposition method , which was first fully exploited by Asakura in [3].
Notice that, although the notion of path was introduced by Temple and Young
[21], the idea of the decomposition indeed goes back to Asakura [2]. It consists,
roughly speaking, in the following.
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Paths are broken lines, in the xt-plane, which follow shock and entropy
fronts. Each front is decomposed into finitely many segments, whose positions
coincide with that of the front but belong to different paths. A notion of strength
is then introduced for each segment, in such a way that the strength of a wave
is the sum of the strengths of the segments that decompose it. A generation
order is also defined for each segment of the path. The goal of this apparently
complicated construction is to deal separately with primary paths and secondary
paths. In the former case, the strength is decreasing along the path and then
the control of the variation is trivial. The latter case takes into account, for
instance, both the “new” shocks generated through an interaction (for example,
shocks that belong to families different from the interacting ones) and a part of
those shocks whose strength is amplified in the interaction (this is the case, for
instance, of a shock emerging from the interaction of two shocks, all of them
belonging to the same family).

Nishida’s lemma [16] states that, in the case of isothermal gas dynamics, the
total amount of shock waves in Glimm approximate solutions does not increase.
We shall obtain estimates of the approximate solutions along paths, showing
that the strength of each path decreases at the rate of cn−1 (for 0 < c < 1) as n,
the generation order, increases. This is the “pathwise” version for system (1.1)
of Nishida’s lemma and plays a crucial role in proving both the stability of the
wave-front tracking scheme and the decay property of the weak entropy solutions
(see Glimm and Lax [12]). If 1 < γ ≤ 5

3 , we also introduce secondary waves
and show that the total amount of these waves is (γ − 1) times the interaction
potential ; this leads to a further understanding both of the assumption made in
Theorem 1.1 and of the aforementioned perturbation method of Temple [22].

The main result of this paper is the following.

Theorem 1.3. Under the same assumptions of Theorem 1.1, the wave-front
tracking scheme is stable and provides a global BV-solution to (1.1)–(1.2).

As we emphasized above, the interest of this result lies more in the techniques
of proof than in its bare statement.

The system (1.1) is close to the following one, which arises in the modelling
of phase transitions in fluids: vt − ux = 0,

ut + p(v, λ)x = 0,
λt = 0.

(1.4)

Global BV-solutions are obtained by Amadori and Corli [1], Asakura and Corli
[5], Holden, Risebro and Sande [14] for p = a2(λ)v−1 in [1, 5] and p = a2v−λ in
[14]. System (1.4) is simpler than (1.1) in the sense that, if the initial data λ is
constant in an interval [x0, x1], then in that region it reduces to the system of
isothermal or isentropic gas dynamics. However, the study of (1.4) is somewhat
more difficult than that of (1.1), because the former lacks of any appropriate
parameter as ϵ = 1

2 (γ − 1) in the latter, where ϵ times the total variation of
the initial data is assumed arbitrarily small. However, some basic ideas and
methods developed in [5] are adopted in the present paper. We emphasize that
in [5] only shock fronts (and not entropy fronts, as it is also the case here) gave
rise to paths.
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The paper is organized as follows. In Section 2 we quickly introduce the
notation concerning the wave curves and the Riemann problem [7, 9, 20]. Then,
the front-tracking scheme is described in Section 3 following Bressan [7]. Section
4 deals with the (very) technical subject of the local interaction estimates. The
main result of this section, namely Lemma 4.3, was first given by Liu [15];
however, the interested reader can find fully detailed proofs in [4]. In Section 5
we finally enter the core of the paper by proving the global interaction estimates,
which parallel those of Liu [15] but are suitably adapted to our different scheme.
We define paths and their strengths in Section 6; a precise description of the
decomposition by paths is given there. Estimates along paths are obtained
in Section 7 and the stability of the front-tracking scheme is finally proved in
Section 8. Our estimates also imply the asymptotic stability of the BV-solutions
obtained in this paper (see Asakura [3, Section 8]).

2 The Riemann Problem

The quantity η = S/R is called the dimensionless entropy . As we shall see in
(2.8), system (1.1) admits stationary waves connecting states with p+ = p−,
u+ = u−, η+ ̸= η−; then, it is useful to choose U = (p, u, η) as independent
variables. Note that v can be written by using p and η; we have

v = a
2
γ e

γ−1
γ ηp−

1
γ and

√
−vp(p, η) = γ− 1

2 a
1
γ e

γ−1
2γ ηp−

γ+1
2γ .

The quasi-linear equations associated to (1.1) are

pt −
ux

vp
= 0, ut + px = 0, ηt = 0.

From these equations we find that the characteristic speeds are

λ1(U) = − 1√
−vp(p, η)

, λ2(U) =
1√

−vp(p, η)
, λ0(U) = 0

and the corresponding characteristic vector fields may be written as

R1(U) = t(1,−
√
−vp(p, η), 0), R2(U) = t(1,

√
−vp(p, η), 0),

R0(U) = t(0, 0, 1).

Setting ϵ = γ−1
2 , we can write the forward 1-rarefaction curve R̂F

1 (U0) and

the backward 2-rarefaction curve R̂B
2 (U0) issuing from U0 as

R̂F
1 (U0) :

{
u− u0 = −

√
γa

1
γ

ϵ e
ϵ
γ η0(p

ϵ
γ − p

ϵ
γ

0 ),
η − η0 = 0,

p ≤ p0,

R̂B
2 (U0) :

{
u− u0 =

√
γa

1
γ

ϵ e
ϵ
γ η0(p

ϵ
γ − p

ϵ
γ

0 ),
η − η0 = 0.

p ≤ p0.

(2.1)

These curves are integral curves of Rj(U) (j = 1, 2), respectively. If U ∈ R̂F
1 (U0)

there is a 1-rarefaction wave connecting U0 and U ; if U ∈ R̂B
2 (U0) there is a

2-rarefaction wave connecting U and U0.
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A self-similar jump discontinuity having the form

U(x, t) =

{
U− for x < st,
U+ for x > st,

(2.2)

is a weak solution of (1.1) if and only if the constant states U− and U+ satisfy
the Rankine-Hugoniot condition{

E+ − E− + 1
2 (p+ + p−)(v+ − v−) = 0,

(u+ − u−)
2 = −(p+ − p−)(v+ − v−),

where the shock speed s satisfies s2 = −p+−p−
v+−v−

. For a polytropic gas, the

Rankine-Hugoniot condition is equivalent to
e(γ−1)(η+−η−) =

(
p+
p−

){
(γ − 1)p+ + (γ + 1)p−
(γ + 1)p+ + (γ − 1)p−

}γ

,

(u+ − u−)
2 =

2v−(p+ − p−)
2

(γ + 1)p+ + (γ − 1)p−
.

(2.3)

If p+ ̸= p−, we have two branches of solutions to (2.3):

u+ − u− = ±

√
2v−

(γ + 1)p+ + (γ − 1)p−
(p+ − p−), s = ±

√
−p+ − p−
v+ − v−

. (2.4)

Let us fix p− and η−. When considering η+ as a function of p+, we have

dη+
dp+

=
(γ + 1)(p+ − p−)

2

p+{(γ − 1)p+ + (γ + 1)p−}{(γ + 1)p+ + (γ − 1)p−}
> 0, (2.5)

which shows that η+ > η− if and only if p+ > p−. Since the entropy must
increase as time goes on, the physically relevant branches are

p+ > p− for s < 0 and p+ < p− for s > 0. (2.6)

A jump discontinuity (2.2) lying on a Hugoniot branch satisfying (2.6) is called
a shock wave and the line of discontinuity x = st is referred to as a shock front.
More precisely, by setting

G(p0, p; η0) =
a

1
γ e

ϵ
γ η0(p− p0)

p
1
2γ

0 {(1 + ϵ)p+ ϵp0}
1
2

,

H(p0, p) =
1

2ϵ
log

[(
p

p0

){
ϵp+ (1 + ϵ)p0
(1 + ϵ)p+ ϵp0

}γ]
,

we define the forward 1-shock curve ŜF1 (U0) and the backward 2-shock curve

ŜB2 (U0) issuing from U0 as

ŜF1 (U0) :

{
u− u0 = −G(p0, p; η0),
η − η0 = H(p0, p),

p > p0,

ŜB2 (U0) :

{
u− u0 = G(p0, p; η0),
η − η0 = H(p0, p),

p > p0.

(2.7)
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At last, if p+ = p− we have an entropy wave

u+ = u−, p+ = p−, η+ ̸= η−, s = 0, (2.8)

which coincides with the integral curve R0(U−) when η+ varies. This type of
discontinuity is also called a contact discontinuity.

We define the forward 1-wave curve ŴF
1 (UL) = R̂F

1 (UL) ∪ ŜF1 (UL) and the

backward 2-wave curve ŴB
2 (UR) = R̂B

2 (UR) ∪ ŜB2 (UR); the 0-wave curves are
just the integral curves R0. Each wave curve constitutes a C2-curve with
Lipschitz-continuous second derivative; they represent all realizable rarefac-
tion, shock and entropy waves. More precisely, if (p, u, η) ∈ ŴF

1 (UL), then
there is a 1-rarefaction or shock wave connecting (pL, uL, ηL) and (p, u, η); if

(p, u, η) ∈ ŴB
2 (UR), there is a 2-rarefaction or shock wave connecting (p, u, η)

and (pR, uR, ηR). The projections of the curves ŴF
1 (UL) and ŴB

2 (UR) on the
pu-plane are denote by WF

1 (UL) and WB
2 (UR), respectively.

The Riemann problem, i.e., the initial-value problem for (1.1) with piecewise
constant initial data

U(x, 0) =

{
UL if x < 0,
UR if x > 0,

(2.9)

is solved in the following way. Let (pL, uL, ηL) and (pR, uR, ηR) be given Rie-
mann data. If the curves WF

1 (UL) and WB
2 (UR), have an intersection point

(pm, um), then the state (pm, um, η−m) ∈ ŴF
1 (UL) and (pm, um, η+m) ∈ ŴB

2 (UR)
are connected by an entropy wave. Since the sound speed is expressed as

c =
√
γpv =

√
γa

1
γ e

ϵ
γ ηp

ϵ
γ ,

we have the following well-known theorem, where uniqueness is understood in
the sense of Smoller [20, Theorem 18.6].

Theorem 2.1. The Riemann problem for (1.1) with data (2.9) has a unique
solution if

uR − uL <
cL + cR

ϵ
. (2.10)

3 The Wave-Front Tracking Scheme

The wave-front tracking scheme provides a way for constructing approximate
solutions to the system (1.1) with initial data

U(x, 0) = U(x) (3.1)

in the class BV(R). We quickly sketch here the main steps, referring the reader
to [7] for details. We define

η∗ = inf η(x). (3.2)

Let h be a positive number. We approximate the initial data U(x) by a

step function U
h
(x) having finitely many jumps; moreover, we may assume

η∗ ≤ min ηh(x).

Let x1 < · · · < xM be the points of discontinuity of U
h
(x). At each xm, we

solve the Riemann problem with initial data UL = U
h
(xm−0), UR = U

h
(xm+0)
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in an approximate way: every rarefaction wave is substituted by several small
fans consisting of constant states and jump discontinuities separating them.
This is called the accurate Riemann solver .

The issue is how to extend the approximate solution Uh after a wave in-
teraction. To avoid the breakdown due to the possible divergence of the jump
discontinuities within a finite time, a simplified Riemann solver must be intro-
duced. It consists in prolonging each interacting wave, say θ′ and θ′′, with a
wave of the same family and size; if the fronts belong to the same family they
are prolonged as a single front of size θ′ + θ′′. Since the waves in general do not
commute, a nonphysical front is introduced with a sufficiently high speed λ̂.

Now, we describe how the two solvers are used in the construction of Uh.
Recall that the amount of waves emerging from an interaction is estimated
by the product |θ′θ′′| of the strengths of the incoming waves. Then, we fix a
threshold ρ > 0 and extend Uh past an interaction of two waves θ′ and θ′′ at
(x, t) as follows: if |θ′θ′′| ≥ ρ then we use the accurate Riemann solver with
data Uh(x, t− 0), else, if |θ′θ′′| < ρ, we use the simplified Riemann solver, with
the proviso that if one of the waves is an entropy wave, then we use the former
solver if M0|θ′θ′′| ≥ ρ and the latter if M0|θ′θ′′| ≤ ρ. Here, M0 is the constant
defined in (5.28).

The above procedure gives an approximate solution up to some time T > 0;
in order to prove that Uh is defined for t ∈ (0,+∞) we shall show that the
number of interactions remains finite for any time.

4 Interaction of Two Incoming Waves

We define p∗ = inf p(x). We shall show in Lemma 5.2 that there exist p∗, p
∗

and H such that all waves under consideration are in the region

0 < p∗ ≤ p ≤ p∗, 0 ≤ η − η∗ ≤ H, (4.1)

if ϵTV(p, u, η) is sufficiently small. Therefore, in the following we assume that
(4.1) holds. We introduce the Riemann invariants with respect to η∗

w = u−
√
γa

1
γ

ϵ
e

ϵ
γ η∗(p

ϵ
γ − p

ϵ
γ
∗ ), z = u+

√
γa

1
γ

ϵ
e

ϵ
γ η∗(p

ϵ
γ − p

ϵ
γ
∗ )

and set

τ =
z − w

2
=

√
γa

1
γ

ϵ
e

ϵ
γ η∗(p

ϵ
γ − p

ϵ
γ
∗ ). (4.2)

Remark 4.1. In Liu [15], the Riemann invariants are chosen with respect to
a different entropy level, denoted there as s∗, which is an upper bound for the
values of the entropy (see [15, Lemma 5.1]). Our choice of η∗ is related instead to
the lower bound of entropy. As a consequence, the slopes of the shock-rarefaction
curves in the wz-plane defined below are positive while in [15] they are negative.

The strengths of the shock and rarefaction waves will be measured by w and
z. The pressure is considered to be a function of τ : p = p(τ) and we set

g(τ0, τ ; η0) = G
(
p(τ0), p(τ); η0

)
, h(τ0, τ) = H

(
p(τ0), p(τ)

)
. (4.3)
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Since w+z±e
ϵ
γ (η0−η∗)(z−w) are constant along rarefaction curves, we find that

the forward 1-rarefaction curve R̂F
1 (U0) and the backward 2-rarefaction curve

R̂B
2 (U0) are expressed as

R̂F
1 (U0) : z − z0 =

e
ϵ
γ (η0−η∗) − 1

e
ϵ
γ (η0−η∗) + 1

(w − w0), w ≥ w0,

R̂B
2 (U0) : w − w0 =

e
ϵ
γ (η0−η∗) − 1

e
ϵ
γ (η0−η∗) + 1

(z − z0), z ≤ z0.

Note that 0 < e
ϵ
γ

(η0−η∗)−1

e
ϵ
γ

(η0−η∗)
+1

< 1.

The forward 1-shock curve ŜF1 (U0) and the backward 2-shock curve ŜB2 (U0)
issuing from U0 are also represented by using the Riemann invariant coordinates.
Remark that by (4.3) the Hugoniot curves through U0 are expressed as

u− u0 = ∓g(τ0, τ ; η0), η − η0 = h(τ0, τ),

which define in particular the function η(τ) = η0+h(τ0, τ). Note that 0 < ϵ ≤ 1
3

is equivalent to 1 < γ ≤ 5
3 .

The following results were proved by Liu [15] (see also Asakura [4]).

Lemma 4.1. If 0 < ϵ ≤ 1
3 , then there are functions z1 = z1(w; η0) and w2 =

w2(z; η0) such that

ŜF1 (U0) = {(w, z, η); z = z1(w; η0), η = η(τ), w < w0},

ŜB2 (U0) = {(w, z, η); w = w2(z; η0), η = η(τ), z > z0}.

Moreover, there is a constant B > 1, which depends on p∗, p
∗, H, such that

e
ϵ
γ (η0−η∗) − 1

e
ϵ
γ (η0−η∗) + 1

= z′1(w0; η0) ≤ z′1(w; η0) ≤ Be
ϵ
γ (η0−η∗) − 1

Be
ϵ
γ (η0−η∗) + 1

,

e
ϵ
γ (η0−η∗) − 1

e
ϵ
γ (η0−η∗) + 1

= w′
2(z0; η0) ≤ w′

2(z; η0) ≤ Be
ϵ
γ (η0−η∗) − 1

Be
ϵ
γ (η0−η∗) + 1

.

At last,

z′′1 (w; η0) < 0 < w′′
2 (z; η0),

η′1(w) < η′1(w0) = 0 = η′2(z0) < η′2(z).

Lemma 4.2. If η1 > η0 then

z1(w; η1) ≤ z1(w; η0), w2(z; η1) ≤ w2(z; η0). (4.4)

We denote by α, β, ξ, π, respectively, the strengths of 1-shock waves, 2-shock
waves, 1-rarefaction waves, 2-rarefaction waves, respectively. They are defined
by

α = w0 − w if (p, u, η) ∈ ŜF1 (p0, u0, η0),

β = z − z0 if (p, u, η) ∈ ŜB2 (p0, u0, η0),

ξ = w − w0 if (p, u, η0) ∈ R̂F
1 (p0, u0, η0),

π = z0 − z if (p, u, η0) ∈ R̂B
2 (p0, u0, η0).
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We also define for entropy waves

δ = ηL − ηR if (p0, u0, ηL), (p0, u0, ηR) are the side states.

The strength of an entropy wave will be defined later at (4.9).
In order to measure the increase of the entropy across shock waves, we define

the quantities δα, δβ as

δα = η − η0 if (p, u, η) ∈ ŜF1 (p0, u0, η0),

δβ = η − η0 if (p, u, η) ∈ ŜB2 (p0, u0, η0).

Remark that all these quantities are positive.
From now on, we also denote by α, β, δ, ξ, π, the corresponding waves.

Suppose that UL, UM are connected by a 2-wave θ2 (or an entropy wave) and
UM , UR by a 1-wave θ1(or an entropy wave); these waves are assumed to interact.
Then, under the assumption (2.10), the Riemann problem has a unique solution
connecting the states UL and UR. It is composed of a 1-wave θ′1 connecting UL

to U−, an entropy wave δ′ connecting U− to U+ and a 2-wave θ′2 connecting
U+ to UR. This interaction is simply denoted by

θ2 + θ1 → θ′1 + δ′ + θ′2.

The local interaction estimates are gathered in the following lemma, which
was first proved by Liu [15]; we also refer to Asakura [4] for more details.
Notation below is as in [4] and slightly differs from that in [15].

Lemma 4.3. Assume that 0 < ϵ ≤ 1
3 . Assume also that p and η satisfy (4.1) and

ϵH is sufficiently small. Then there are constants 0 < D0 < 1 and D,D1, D2 >
0, depending only on p∗, p

∗, H, such that the following estimates hold.

(1) β + α → α′ + δ′ + β′; we have δα′ ≥ δα − ϵD2αβ, δβ′ ≥ δβ − ϵD2αβ,

α′ ≤ α+ ϵDαβ, |δ′| ≤ ϵD2αβ, β′ ≤ β + ϵDαβ.

(2) π + α → α′ + δ′ + π′; we have δα′ ≥ δα − ϵD2απ,

α′ ≤ α+ ϵDαπ, |δ′| ≤ ϵD2απ, π′ ≤ π + ϵDαπ.

(3) α1 + α2 → α′ + δ′ + π′; we have δα′ ≥ δα1 + δα2 − ϵD2α1α2,

α1 + α2 ≤ α′ ≤ α1 + α2 + ϵDα1α2, |δ′| ≤ D2α1α2, π′ ≤ Dα1α2.

(4) δ + α → α′ + δ′ + θ′; we have δα′ ≥ δα − ϵDα|δ|,

α′ ≤ α+ ϵD1α|δ|, |δ′| ≤ |δ|+ ϵDα|δ|, θ′ ≤ ϵD1α|δ|.

(5) δ + ξ → ξ′ + δ′ + θ′; we have

ξ′ ≤ ξ + ϵD1ξ|δ|, |δ′| ≤ |δ|+ ϵDξ|δ|, θ′ ≤ ϵD1ξ|δ|.

(6) ξ + α → α′ + δ′ + β′; we have δα′ ≥ δα −D(α− α′)− ϵD2αξ, δβ′ ≥ 0,

α′ ≤ α− ξ, |δ′| ≤ D(α− α′) + ϵD2αξ, β′ ≤ D0(α− α′) + ϵDα′ξ.
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(7) ξ + α → ξ′ + δ′ + β′; we have δβ′ ≥ δα − ϵD2αξ,

ξ′ ≤ ξ, |δ′| ≤ Dα, β′ ≤ D0α..

(8) α+ ξ → α′ + δ′ + β′; we have δα′ ≥ δα −D(α− α′)− ϵD2αξ, δβ′ ≥ 0,

α′ ≤ α− ξ, |δ′| ≤ D(α− α′), β′ ≤ D0(α− α′).

(9) α+ ξ → ξ′ + δ′ + β′; we have δβ′ ≥ δα − ϵD2αξ,

ξ′ ≤ ξ, |δ′| ≤ Dα, β′ ≤ D0α.

(10) α+ ξ → ξ′ + δ′ + π′; we have

ξ′ ≤ ξ − α, |δ′| = δα ≤ Dα, π′ ≤ ϵDαξ.

(11) π + ξ → ξ′ + π′; then ξ′ = ξ and π′ = π.

Note that

δ′ =

{
δα′ − δα − (δβ′ − δβ) in case (1),
δα′ − δα1 − δα2 in case (3).

(4.5)

Remark also that, because of Remark 4.1, the estimate for α′ in Case (3) is the
converse of that given in [15].

Let us denote by PL = P(wL, zL),PR = P(wR, zR) etc. points of the wz-
plane and by |PQ| the Euclidean distance between two points P and Q. The
projections of the forward and backward shock curves on the wz-plane are de-
noted by SFj (w0, z0; η0) and SBj (w0, z0; η0), j = 1, 2, respectively.

In addition to Lemma 4.3 we also need the following result.

Lemma 4.4. Consider Case (3) under the assumptions of Lemma 4.3. Then
there is a constant B0, which only depends on p∗, p

∗ and H, such that 0 < B0 <
1 and

π′ ≤ B0 min
{
α1, α2

}
. (4.6)

PL

PM

P
+−

π

α1α2

PR
π

θ0

θ0

θ0

P1

 θ 

S1
B

z

w
R2

S1
F

Figure 1: Proof of the inequality π′ ≤ B0α2 in Lemma 4.4.

Proof. First, we prove the inequality π′ ≤ B0α2. Consider the backward 1-shock
curve and the backward 2-rarefaction curve issuing from PR (see Figure 1). The
angle θ0 formed by the tangent to SB1 (wR, zR; ηR) at PR and the horizontal line
equals the one formed by R′B

2 = RB
2 (wR, zR; ηR) and the vertical line PRP1.
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Here P1 is intersection point {z = z±}∩{w = wR}. The slope of SF1 (wL, zL; ηL)
at P± is denoted by tan θ.

We have |P±P1| = π′ tan θ0 and hence

π′ ≤ (α2 + |P±P1|) tan θ − α2 tan θ0 = π′ tan θ tan θ0 + α2(tan θ − tan θ0).

Thus we have

π′ ≤ α2(tan θ − tan θ0)

1− tan θ tan θ0
. (4.7)

By Lemma 4.1 and (4.1) we deduce

0 < tan θ ≤ Be
ϵ
γ H − 1

Be
ϵ
γ H + 1

< 1.

Moreover, for θ fixed, the function ϕ(ξ) = tan θ−ξ
1−(tan θ)ξ is a decreasing function of

ξ in [0, tan θ]. Then, by (4.7) we conclude that

π′ ≤ α2 tan θ ≤ Be
ϵ
γ H − 1

Be
ϵ
γ H + 1

α2 =: B0α2,

and we have proved the desired inequality.

PL

PM

α1α2

S1
∗

P+−

α2

R

RP

∗P

π π∗ ∗P2

∗P1

z

w

S1

R2

S1
F

Figure 2: Proof of the inequality π′ ≤ B0α1 in Lemma 4.4.

Now, we prove the inequality π′ ≤ B0α1; we refer to Figure 2. We first
notice that ηM > ηL; hence, by Lemma 4.2 we have

z1(w; ηM ) < z1(w; ηL).

This shows that the shock curve S∗1 = SF1 (wM , zM ; ηL) is located above the curve
S′1 = SF1 (wM , zM ; ηM ). Hence we have

π∗ = |P∗
RP

∗
2|+ |P∗

2P
∗
1| ≤ |P∗

RP
∗
2|+

Be
ϵ
γ H − 1

Be
ϵ
γ H + 1

|P±P
∗
1|

≤ |P∗
RP

∗
2|+

Be
ϵ
γ H − 1

Be
ϵ
γ H + 1

· e
ϵ
γ H − 1

e
ϵ
γ H + 1

· π∗.

Thus we obtain

π′ < π∗ ≤ (Be
ϵ
γ H + 1)(e

ϵ
γ H + 1)

2(B + 1)e
ϵ
γ H

· |P∗
RP

∗
2|.
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Since π′′ = |P∗
RP

∗
2| is the strength of the rarefaction wave generated by the

interaction
α1 + α′

2 → α′′ + π′′ (α′′ = α1 + α′
2)

in the isentropic gas dynamics, we find some 0 < D′
0 < 1 so that π′′ ≤ D′

0α1,
[18]. With a slight abuse of notation set

B0 :=
(Be

ϵ
γ H + 1)(e

ϵ
γ H + 1)

2(B + 1)e
ϵ
γ H

D′
0. (4.8)

Then B0 < 1 if ϵH sufficiently small 1 and we obtain the desired estimate.

In Lemma 4.4, the assumption 0 < ϵ ≤ 1
3 and the smallness of ϵH were only

used for the inequality π′ ≤ B0α1 and not for the inequality π′ ≤ B0α2.

Remark 4.2. We refer to the cases listed in Lemma 4.3. In Cases (1)–(5) the
waves outgoing from an interaction are estimated in a quadratic way by ϵ times
the product of the incoming waves; namely, by ϵDαβ, ϵDαπ, ϵDα1α2, ϵα|δ|,
ϵDξ|δ|, respectively. An exception is the case of δ′ and π′ in Case (3), where ϵ
is missing. This case requires a special consideration below; in particular for π′

we shall use Lemma 4.4. The interaction estimates in Cases (6)–(10) are of a
different nature and are considered separately.

Therefore the local interactions are subdivided into the following 4 groups:

A: (1), (2), (11); B: (3);

C: (4), (5); D: (6), (7), (8), (9), (10).

Since the estimates are similar within each group, we shall discuss only Cases
(1), (3), (4), (6) as typical ones.

Now, we introduce a small number M0 > 0 to be fixed later on at (5.28) and
define the strength of an entropy wave δ as

M0|δ|. (4.9)

This definition aims at controlling the outgoing waves, as we now show.

• Consider Case (3); by Lemma 4.4, we have

π′ +M0|δ′| ≤ B0 min{α1, α2}+M0D2α1α2

≤ {B0 +M0D2 sup
α

α}min{α1, α2}.

Then, the number M0 is chosen so small that

B0 +M0D2 sup
α

α ≤ D∗ < 1, (4.10)

where D∗ ∈ (D0, 1) is an arbitrary number fixed once for all (we warn the
reader that, for typographical reasons, from Section 7 on, we shall denote
D∗ = c, see (7.3)). The requirement that D∗ > D0 is going to be used in
(4.11) and (4.15).

1By setting B → ∞, a sufficient condition is ϵH < γ log
(

1
D′

0
− 1

)
.
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• Consider Case (6) and assume D2M0 < D, see (5.14). Since α′ ≤ α − ξ,
we find that

β′ +M0|δ′| ≤ (D0 +DM0)(α− α′) + ϵ(Dα′ +D2M0α)ξ

≤ {D0 +DM0 + 2ϵDα} (α− α′).

Let ϵ supα and M0 be so small that

D0 +DM0 + 2ϵD sup
α

α ≤ D∗ < 1. (4.11)

Then we have the following important estimate:

β′ +M0|δ′| ≤ D∗(α− α′). (4.12)

Moreover, unless of replacing D with D + ϵD2 supα α, we may assume
δα′ ≥ δα − D(α − α′). We denote by CH a strictly positive constant,
which depends on p∗, p

∗ and H, such that δα ≤ CHα and analogously for
β. We also choose M0 so small that

M0CH ≤ 1
2 . (4.13)

In Cases (7), (9) and (10) the quantity α′ in (4.12) is missing; moreover,
in Case (10) β′ is replaced by π′. If we denote both β′ and π′ with θ′,
then we easily see that the estimate

θ′ +M0|δ′| ≤ D∗α, (4.14)

holds for all Cases (6)–(10), provided that (4.11) is replaced by

D0 +DM0 + 2ϵD sup
α,β,ξ,π

{α, β, ξ, π} ≤ D∗ < 1. (4.15)

5 Global Interaction Estimates

We consider an approximate solution Uh = (ph, uh, ηh) defined for t ∈ [0, T ] as
in Section 3; for simplicity we often drop the superscript h. Then, we denote
w(x, t) = w

(
p(x, t), u(x, t)

)
, z(x, t) = z

(
p(x, t), u(x, t)

)
and w(x) = w(x, 0),

z(x) = z(x, 0).

Let P, Q be two arbitrary points in the wz-plane. By denoting w1 = z,
w2 = w, we define a distance in that plane by

|P−Q| = max
j=1,2

{|wj(P)− wj(Q)|}. (5.1)

Since TV
(
p(x), u(x), η(x)

)
is finite, there are limit states

U±∞ = (p±∞, u±∞, η±∞) = lim
x→±∞

(
p(x), u(x), η(x)

)
,

whose projections on the wz-plane are simply denoted by P±∞ = P(w±∞, z±∞).
Consider a sequence of states U−∞ = U0, U1, U2, . . . , Un = U∞, connected by
j-waves (1 ≤ j ≤ 2) and denote by P−∞ = P0, P1, P2,. . . , Pn = P∞, their
projections in the wz-plane. We define

L+
j = {l : wj(Pl) ≥ wj(Pl−1), 1 ≤ l ≤ n},

L−
j = {l : wj(Pl) < wj(Pl−1), 1 ≤ l ≤ n}
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and then

L− = {l : Ul−1 and Ul are connected by a shock wave, 1 ≤ l ≤ n}.

Then we have (see Asakura and Corli [5, Theorem A.4])∑
1≤l≤n

|Pl − Pl−1| ≤ 2|P∞ − P−∞|+ 3
∑
l∈L−

|Pl − Pl−1|. (5.2)

For any space-like curve J containing no interaction points (this condition is
assumed in the following for any space-like curve, without any further mention),
we define the global interaction functional F by

F (J) = LF (J) + ϵQ(J), (5.3)

LF (J) =
∑
J

{
(α−M0δα) + (β −M0δβ) +M0|δ|

}
,

Q(J) = M0M1

∑
J:A

(α+ β + ξ + π)|δ| (5.4)

+M1

∑
J:A

(ξα+ ξβ + πα+ πβ) +M2

∑
J:A

(α1α2 + αβ + β1β2).

Here M1 and M2 are positive parameters to be fixed later on. Moreover,
∑

J

(
∑

J:A) denotes the summation of all waves crossing J (and approaching , re-
spectively, [7]). We also define

G(J) = 2|P∞ − P−∞|+ 8F (J). (5.5)

Above, we defined the functionals in terms of space-like curves, instead of t, in
view of further applications, see [12], [7, §7.5]. We denote

TV(J) = TVD(J) +M0TVH(J),

TVD(J) = TV
(
w(x, t), z(x, t)

)
|(x,t)∈J , (5.6)

TVH(J) = TVη(x, t)|(x,t)∈J , (5.7)

where TVD(J) is computed with respect to the metric (5.1). We also define

M3 = M1 +M2. (5.8)

Proposition 5.1. If the constants M0, M1, M2 satisfy (4.13) and

ϵM3G(J) ≤ 1, (5.9)

then
1
2F (J) ≤ TV(J) ≤ G(J). (5.10)

Proof. By (4.13) we deduce

α−M0δα ≥ α/2, β −M0δβ ≥ β/2. (5.11)

Then, by (5.2),

TV(J) ≤ 2|P∞ − P−∞|+ (3 + CHM0)
∑
J

(α+ β) +M0

∑
J

|δ|

≤ 2|P∞ − P−∞|+ 8LF (J),
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that proves the inequality on the right of (5.10); remark that condition (5.9)
has not been used. By this inequality and (5.9) we have

F (J) ≤ TVD(J) +M0TVH(J)

+ ϵM0M1TVD(J)TVH(J) + ϵM3TVD(J)2

≤ TV(J) + ϵM3G(J)TV(J) ≤ 2TV(J),

that proves the inequality on the left of (5.10).

Let O be a space-like curve such that there are no points of interaction
between O and t = 0. The global interaction estimates consist in showing

F (J) ≤ F (O), (5.12)

for any arbitrary space-like curve J , provided that ϵTV(O) is sufficiently small
and M0,M1,M2 satisfy a set of constraints. We assume, analogously to (4.1),

G(O) ≤ G∗, (5.13)

for some fixed constant G∗ (defined in the proof of Lemma (5.2)). About M0,
besides the conditions (4.11), (4.13) we further require that

M0D ≤ D1, M0D2 ≤ D. (5.14)

To prove (5.12) we argue as follows. Suppose that (5.12) holds for J and for
every space-like curve lying between J and t = 0. Let J ′ be a space-like curve
lying between J and t = ∞. If there are no interaction points between J and
J ′, then obviously F (J ′) = F (J) ≤ F (O). Let us assume that there is a single
interaction point P between J ′ and J .

If θ′, θ′′ are the two incoming waves at P, we define

Q(P) =

{
Dθ′θ′′ if both θ′ and θ′′ are 1 or 2 waves,
D1|θ′θ′′| if either θ′ or θ′′ is an entropy wave.

(5.15)

We shall show a stronger estimate, which is needed later on (Lemma 5.3),

F (J ′)− F (J) ≤ −3ϵQ(P), (5.16)

for any case of Lemma 4.3. Then, by an inductive argument, we have (5.12) for
all J.

According to the cases we are dealing with, we impose some conditions on
the parameters; Lemma 5.2 shall prove that a choice of the parameters can
be done once for all. As we mentioned in Remark 4.2, we shall carry out the
estimates only for the most complicated cases (1), (3), (4) and (6). Below, we
use Lemma 4.3 several times.

Case (1): β + α → α′ + δ′ + β′. We have

LF (J
′)− LF (J)

= (α′ − α)−M0(δα′ − δα) + (β′ − β)−M0(δβ′ − δβ) +M0|δ′|
≤ 2ϵDαβ +M0

{
|δ′| − (δα′ − δα)− (δβ′ − δβ)

}
.
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By (4.5), if δ′ ≥ 0 we have |δ′| = δα′ − δα − (δβ′ − δβ); if δ′ < 0, we have
|δ′| = δβ′ − δβ − (δα′ − δα). In both cases by (5.14) we obtain

LF (J
′)− LF (J) ≤ 4ϵDαβ.

Moreover, by (5.10) and (5.14) we have

Q(J ′)−Q(J)

≤ M0M1

(∑
(αJ + βJ + ξJ + πJ)|δ′|+

∑(
[α′ − α]+ + [β′ − β]+

)
|δJ |

)
+M1

∑
(ξJ + πJ )

(
[α′ − α]+ + [β′ − β]+

)
+M2

∑(
αJ [α

′ − α]+ + βJ [β
′ − β]+

)
−M2αβ

≤ M0M1TVD(J)ϵD2αβ + 2M0M1TVH(J)ϵDαβ + 2M1TVD(J)ϵDαβ

+2M2TVD(J)ϵDαβ −M2αβ

≤
{
3ϵDM3G(J)−M2

}
αβ. (5.17)

Here,
∑

(αJ + βJ) denotes the total amount of shock waves crossing J and so
on; we used the notation [x]+ = max{x, 0}. Hence, by (5.12) and assuming

7D + 3ϵDM3G(O) ≤ M2, (5.18)

we have Q(J ′)−Q(J) ≤ −7Dαβ. Then (5.16) follows.

Case (3): α1 + α2 → α′ + δ′ + π′. We have

LF (J
′)− LF (J) = (α′ − α1 − α2)−M0(δα′ − δα1 − δα2) +M0|δ′|

≤ ϵDα1α2 +M0

{
|δ′| − (δα′ − δα1 − δα2)

}
.

By (4.5) and (5.14), if δα′ ≥ δα1 + δα2 we have |δ′| = δα′ − δα1 − δα2 and
LF (J

′)−LF (J) ≤ ϵDα1α2. If δα′ < δα1 + δα2 , we have |δ′| = δα1 + δα2 − δα′ ≤
ϵD2α1α2 and hence LF (J

′)−LF (J) ≤ 3ϵDα1α2 by (5.14). In any case we have

LF (J
′)− LF (J) ≤ 3ϵDα1α2.

We find by (5.14)

Q(J ′)−Q(J)

≤ M0M1

(∑
(αJ + βJ + ξJ + πJ)|δ′|+

∑(
[α′ − α1 − α2]+ + π′)|δJ |)

+M1

∑
(αJ + βJ )π

′ +M1

∑
(ξJ + πJ)[α

′ − α1 − α2]+

+M2

∑
(αJ + βJ )[α

′ − α1 − α2]+ −M2α1α2

≤ M0M1TVD(J)D2α1α2 + (ϵ+ 1)M0M1TVH(J)Dα1α2

+M1TVD(J)Dα1α2 +M1TVD(J)ϵDα1α2

+M2TVD(J)ϵDα1α2 −M2α1α2

≤
{
2DM1G(J) + ϵDM3G(J)−M2

}
α1α2.

Hence, by the hypothesis (5.12) and assuming

6D +D
{
2M1 + ϵM3

}
G(O) ≤ M2, (5.19)
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we obtain Q(J ′)−Q(J) ≤ −6Dα1α2. As a consequence (5.16) follows.

Case (4): δ + α → α′ + δ′ + θ′. First, letting δπ′ = 0,

LF (J
′)− LF (J) = (α′ − α)−M0(δα′ − δα) + θ′ −M0δθ′ +M0(|δ′| − |δ|)

≤ 3ϵD1|δ|α+M0CHϵD|δ|α+M0ϵD|δ|α
≤ 5ϵD1|δ|α,

by (4.13). Second,

Q(J ′)−Q(J)

≤ M0M1

(∑
(αJ + βJ + ξJ + πJ)[|δ′| − |δ|]+ +

∑(
[α′ − α]+ + θ′

)
|δJ |

)
−M0M1|δ|α+M1

∑
(αJ + βJ + ξJ + πJ)θ

′

+M2

∑
(αJ + βJ)

(
[α′ − α]+ + θ′

)
≤ M0M1TVD(J)ϵD|δ|α+ 2M0M1TVH(J)ϵD1|δ|α− M0M1|δ|α

+M1TVD(J)ϵD1|δ|α+ 2M2TVD(J)ϵD1|δ|α
≤

{
2ϵD1M3G(J)−M0M1

}
|δ|α.

Hence, by using the hypothesis (5.12) and assuming

8D1 + 2ϵD1M3G(O) ≤ M0M1, (5.20)

we obtain Q(J ′)−Q(J) ≤ −8D1|δ|α. Then (5.16) follows.

Case (6): ξ + α → α′ + δ′ + β′. We have

LF (J
′)− LF (J) = (α′ − α)−M0(δα′ − δα) + β′ −M0δβ′ +M0|δ′|.

Note that, by (5.11),

α′ − α+ β′ ≤ −(1−D0)(α− α′) + ϵDαξ

≤ −
{
1−D0 − 2ϵF (J)D

}
(α− α′).

We conclude that

LF (J
′)− LF (J) = −

{
1−D0 − 2M0D − 2DϵF (J)

}
(α− α′) + 2ϵM0D2αξ.

Moreover,

Q(J ′)−Q(J)

≤ M0M1

(∑
(αJ + βJ + ξJ + πJ)|δ′|+

∑
β′|δJ |

)
+M1

∑
(ξJ + πJ )β

′ −M1αξ +M2

∑
(αJ + βJ )β

′

≤ M0M1TVD(J)|δ′|+M0M1β
′TVH(J) +M1β

′TVD(J)

−M1αξ +M2TVD(J)β′

≤ M0M1G(J)|δ′|+M3G(J)β′ −M1αξ (5.21)

≤ (2M1 +M2)D1G(J)(α− α′) +
{
ϵ(2M1 +M2)DG(J)−M1

}
αξ.
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Remark that we may replace the constants D, D1, D2 in Lemma 4.3 by larger
ones: the result still holds. Then, we assume D1 ≥ D0; by (5.12), (5.14) we
obtain

F (J ′)− F (J)

≤ −
{
1−D0 − 2M0D − 2ϵDF (O)− ϵ2(2M1 +M2)D1G(O)

}
(α− α′)

+ϵ
{
ϵ(2M1 +M2)DG(O)− (M1 − 2M0D2)

}
αξ.

By assuming

2ϵDF (O) + ϵ2(2M1 +M2)D1G(O) ≤ 1−D0 − 2M0D, (5.22)

ϵ(2M1 +M2)DG(O) ≤ M1 − 2M0D2 − 3D, (5.23)

we obtain (5.16) also in this case.

Lemma 5.1. Consider any approximate solution Uh, define

k = 1
2

√
γa

1
γ e

ϵ
γ η∗p

ϵ
γ

−∞ (5.24)

and assume that for some constant K > 0 and any J we have

TVD(J) ≤ K, ϵTVD(J) ≤ k.

Then, there exist p∗, p
∗ and H, which depend on the initial data (3.1) and on

K, such that Uh is valued in the region (4.1).

Proof. By (4.2) we have (
ph

) ϵ
γ − p

ϵ
γ
∗

ϵ
=

zh − wh

2
√
γa

1
γ e

ϵ
γ η∗

.

By (5.10) we deduce that, for any t,

TV
[
(ph)

ϵ
γ −p

ϵ
γ
∗

ϵ

]
≤ TVD(t)

√
γa

1
γ e

ϵ
γ η∗

,

where the total variation on the left-hand side is the usual total variation with
respect to the variable x and TVD(t) is referred to the horizontal space-like
curve at time t. Then,∣∣∣ (ph)

ϵ
γ −p

ϵ
γ
−∞

ϵ

∣∣∣ = ∣∣∣ (ph)
ϵ
γ −p

ϵ
γ
∗

ϵ − p
ϵ
γ
−∞−p

ϵ
γ
∗

ϵ

∣∣∣ ≤ TVD(t)
√
γa

1
γ e

ϵ
γ η∗

. (5.25)

As a consequence, ∣∣∣( ph

p−∞

) ϵ
γ − 1

∣∣∣
ϵ

≤ K

2k
. (5.26)

We first look for the upper bound p∗ of ph. If ph ≤ p−∞ we are done. Otherwise,
let E∗ be the set of points (t, x) where ph(t, x) > p−∞ and only consider points
in E∗. By (5.26) and introducing the increasing function ϕ(y) = (ey − 1)/y we
deduce

γ log ph

p−∞
= γ log ph

p−∞
ϕ(0) ≤ γ log ph

p−∞
ϕ
(

ϵ
γ log ph

p−∞

)
≤ K

2k
,
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whence
ph ≤ p−∞eK/(2γk) .

= p∗.

We now look for a lower bound p∗ of ph by arguing as above. If ph ≥ p−∞
we are done. Otherwise, let E∗ be the set of points (t, x) where ph(t, x) < p−∞

and only consider points in E∗; we denote A =
(
ph

) ϵ
γ /p

ϵ
γ

−∞ < 1. By assumption
we have ϵTVD(t) < k. Then (5.25) implies A ≥ 1

2 . By the elementary identity

A− 1 = logA
∫ 1

0
As ds we deduce∣∣∣ (ph)

ϵ
γ −p

ϵ
γ
−∞

ϵ

∣∣∣ ≥ 1
2γ log 2 p

ϵ
γ

−∞ log p−∞
ph

and then, by (5.25),

ph ≥ p−∞ e−
K
k γ log 2 .

= p∗.

At last, we are concerned with the definition of H. First, consider a Riemann
problem with initial data (2.9), giving rise to waves α, δ and β. By the definitions
of δα and δβ it follows that |δ| ≤ |ηL − ηR| + |δα| + |δβ |. If the solution of the
Riemann problem contains rarefaction waves, the estimate is even simpler, since
in that case the entropy does not change. As a consequence,

0 ≤ ηh − η∗ ≤ TVηh(t) ≤ TVη +
∑

(|δα|+ |δβ |)

≤ TVη + C(p∗, p
∗)TVD(t) ≤ TVη +KC(p∗, p

∗)
.
= H,

by (2.5), for some constant C(p∗, p
∗).

Lemma 5.2 (Global Interaction Estimates). Suppose that TV(U) ≤ K0 for
some positive constant K0 and that ϵTV(U) is sufficiently small. Then, it fol-
lows that (5.16) holds for every pair of space-like curves J and J ′ as above
and

F (J ′) ≤ F (J) ≤ F (O). (5.27)

Moreover, the approximate solution Uh is contained in the region (4.1) for some
p∗, p

∗ and H.

Proof. We choose K = 18K0 in Lemma 5.1; then we have p∗, p
∗ and H. The

choice of p∗, p
∗ and H determines the constants D0, D, D1, D2 in Lemma 4.3;

in turn, the choice of D0, D, D1, D2 fixes D∗ and CH . Moreover, we define
G∗ = K0. At last, we define the constants M0, M1, M2 by

0 < M0 < min

{
1

2CH
,
D∗ −D0

D
,
D1

D
,
D

D2
,
1−D0

2D

}
, (5.28)

M1 =
9D1

M0
, M2 = 9D + 2M1DG∗. (5.29)

In turn, M0, M1 and M2 completely define the functionals F and G.
We justify formulas (5.28) and (5.29) by looking for constants M0, M1, M2

satisfying (4.11) (or (4.15)), (4.13), (5.9), (5.14), (5.18), (5.19) (5.20), (5.22),
(5.23), provided ϵTV(p̄, ū, η̄) is sufficiently small. Indeed, we impose bounds on
ϵG(O), since G(O) ≤ 18TV(p̄, ū, η̄) by (5.5) and (5.10).

We start by looking for necessary conditions about M0, M1, M2. In order
that conditions (4.11), (5.14), (5.22) hold we require that D0 < D∗ < 1 and
choose M0 satisfying (5.28).
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Since 1 − D0 < 1 and we may assume D ≥ CH by possibly enlarging D,
then (4.13) is satisfied. About M1, by considering the extreme case ϵG(O) → 0,
conditions (5.20), (5.23) require that M1 > max{8D1/M0, 2M0D2 + 3D} =
8D1/M0 by (5.28). About M2 and conditions (5.18), (5.19), we need M2 >
7D+2M1DG∗. Then, we choose M1 and M2 satisfying (5.29). Of course, other
choices of these parameters are possible, leading to slightly different bounds on
ϵG(O); however, we are not aiming at optimal bounds.

We are then left to impose that ϵG(O) is small in order that (4.11), (5.9),
(5.18), (5.19) (5.20), (5.22), (5.23) are satisfied. Condition (5.20) reads

ϵM3G(O) ≤ 1
2 .

This implies (5.9), (5.18) and (5.19). At last we are left with (4.11), (5.22),
(5.23); we conclude by requiring

ϵG(O)

≤ min

{
2

(
D∗ −D0

D
−M0

)
,

1

2M3
,
1−D0 − 2M0D

D + 2M3D1
,
M1 − 2M0D2 − 3D

2M3D

}
.

At last, the inequalities TVD(J) ≤ K = 18K0 and G(O) ≤ G∗ = K0 follow by
Proposition 5.1.

Lemma 5.3. Under the same assumptions of Lemma 5.2, we have

3ϵ
∑
P

Q(P) ≤ F (O),

where the summation is done over all the interaction points.

Proof. Let J ′ and J be space-like curves as above. By (5.16) we deduce

3ϵQ(P) ≤ F (J)− F (J ′).

By summing up over all interaction points located between O and J ′ we have

3ϵ
∑

P betweenO and J′

Q(P) ≤ F (O)− F (J ′) ≤ F (O).

Since J ′ is an arbitrary space-like curve, we have proved the lemma.

6 Decomposition by Paths

In this section we introduce of the notion of path in an approximate solution
Uh(x, t). Roughly speaking, a path is a sequence P(x0, t0), P(x1, t1), . . . ,
P(xn, tn) of interaction points (apart from the case t0 = 0) in the xt-plane,
with 0 ≤ t0 < t1 < . . . < tn, which are connected by shock or entropy waves.
By writing Pj = P(xj , tj), a path is represented by

Γ : P0 → P1 → · · · → Pn

and the segment Pj−1Pj is called a front. If a shock or an entropy front starts
at Pn−1 and propagates without interacting with other waves, we continue the
path as a half-line following that front and denote Pn = P∞ = ∞.

20



The index (cj , kj) of the front Pj−1Pj was defined by Asakura [3], Temple
and Young [21]. We recall such definition below; the numbers cj and kj are
called the type and the generation order of the front. First, a suitable positive
integer, to be defined later on, is assigned to k1. Then,

cj =

 1 if Pj−1Pj is a 1-shock wave,
2 if Pj−1Pj is a 2-shock wave,
0 if Pj−1Pj is an entropy wave,

for j ≥ 1,

kj =

{
kj−1 if cj = cj−1,
kj−1 + 1 if cj ̸= cj−1,

for j ≥ 2.

The sequence (c1, k1), (c2, k2), . . . , (cn, kn) is called the index of the path. If
P0 ∈ {t = 0}, then we set k1 = 1 and the path is called a primary path; it is
denoted by ΓP : P0 → P1 → · · · → Pn and each Pj−1Pj is a primary front .

Shock and entropy waves interact with other waves and generate new waves
as described in Lemma 4.3. If an interaction θ′ + θ′′ occurs at some point P0

and generates a shock or an entropy wave of amplitude O(1)ϵθ′θ′′, the front of
that wave is called a secondary front and a secondary path starts at P0; it is
denoted by ΓS : P0 → P1 → · · · → Pn. In this case, the initial generation order
k1 is at least 2. Secondary paths also arise when the strength of an outgoing
wave is larger than that of the ingoing wave of the same family; in that case
the secondary path accounts for the difference of the strengths. In any case,
secondary paths are generated only in Cases (1)–(5). The outgoing entropy
wave appearing in Case (3) always gives rise to a primary path, see Remark 4.2.

The construction of the paths along with the definition of their strengths is
done iteratively as follows. Below, we denote waves α, β, . . . with front Pj−1Pj

by α : Pj−1Pj , β : Pj−1Pj and so on. We assume for the moment that all
waves involved in the interactions under consideration are physical , see Section
3; nonphysical waves are considered at the end of the construction.

First, we focus on the time interval ranging from t = 0 to the first interaction
time t1. Consider the case of a shock or entropy wave θ issuing from P0 ∈ {t = 0}
and interacting with another wave at P1. The front P0P1 forms a primary path
ΓP : P0 → P1. The strength of ΓP is α if θ = α (or β if θ = β) and M0|δ| if
θ = δ; the generation order is 1.

Next, t = t1. Suppose first that a shock wave α : P0P1 interacts with
another wave at P1 and generates θ′1 : P1P2, θ

′
2 : P1P

′
2 and δ′ : P1P

′′
2 . We only

consider Cases (1), (3), (4), (6) in Lemma 4.3. Below, we denote some generic
constants which may change from line to line by

D′, D′′ ∈ [0, D], D′
1 ∈ [0, D1], D′′

2 ∈ [0, D2], D′
∗ ∈ [0, D∗]

(1): β+α → α′+δ′+β′. If α′ ≤ α, we decompose ΓP into the paths ΓP
1 and ΓP

2 ,
which have the same index of ΓP but strengths α′ and α−α′, respectively.
The path ΓP

1 is extended to P2 with unchanged generation order and
strength; the path ΓP

2 stops at P1. If α
′ > α, we have α′−α = ϵD′αβ; we

extend ΓP in the same direction with strength α and generate a secondary
path ΓS

1 : P1 → P2 with index (1, 2) and strength ϵD′αβ. The paths
related to β are dealt analogously.
An entropy wave δ′ with strength M0|δ′| = ϵD′′

2αβ is generated; we define
a secondary path ΓS

0 : P1 → P′′
2 with index (0, 2) and strength ϵM0D

′′
2αβ.
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(3): α1 + α2 → α′ + δ′ + π′. Assume for instance that α = α1. We have
α′ − (α1 + α2) = ϵD′α1α2; then we extend ΓP in the same direction with
strength α1 and generate a secondary path ΓS

1 : P1 → P2 with index
(1, 2) and strength ϵD′α1α2.
An entropy wave δ′ with strength |δ′| = D′′

2α1α2 is generated. We define
a primary path ΓP

0 : P1 → P′′
2 with index (0, 2) and strength M0D

′′
2α1α2.

(4): δ+α → α′+δ′+θ′. If α′ ≤ α, we proceed exactly as in the first part of Case
(1). If α′ > α, we have α′ −α = ϵD′

1α|δ|. Then we extend ΓP in the same
direction with strength α and generate a secondary path ΓS

1 : P1 → P2

with index (1, 2) and strength ϵD′
1α|δ|.

If θ′ = β′, then β′ = ϵD′
1α|δ| and we have another secondary path ΓS

2 :
P1 → P′

2 with index (2, 2) and strength ϵD′
1α|δ|. The entropy wave δ

constitutes a primary path ΓP
0 : P′

0 → P1. If |δ′| ≤ |δ| we decompose ΓP
0

into the paths ΓP
0,1 and ΓP

0,2, which have the same index of ΓP
0 but strengths

M0|δ′| and M0(|δ′| − |δ|), respectively. The path ΓP
0,1 is extended to P′′

2

with unchanged generation order and strength, the path ΓP
0,2 is stopped.

If |δ′| > |δ| and then |δ′| − |δ| = ϵD′′α|δ|, we have a secondary path
ΓS
0 : P1 → P′′

2 with index (0, 2) and strength ϵM0D
′′α|δ|.

(6): ξ+α → α′+δ′+β′. By Lemma 4.3 and (4.12) we find ζ ≥ ξ and D′
∗ ≤ D∗

such that
α′ = α− ζ, β′ +M0|δ′| = D′

∗ζ. (6.1)

We define ζ2, ζ0 by D′
∗ζ2 = β′, D′

∗ζ0 = M0|δ′| so that

ζ = ζ2 + ζ0, ζ2 : ζ0 = β′ : M0|δ′|. (6.2)

The path ΓP is decomposed into three paths ΓP
1 , ΓP

2 and ΓP
0 , whose

strengths are α − ζ, ζ2 and ζ0, respectively. The path ΓP
1 is extended

to P2 with index (1, 1) and strength α − ζ. The path ΓP
2 is extended to

P′
2 with index (2, 2) and strength β′ = D′

∗ζ2. Finally, Γ
P
0 is extended to

P0 → P1 → P′′
2 , where P1P

′′
2 has index (0, 2) and strength M0|δ′| = D′

∗ζ0.
No secondary path shows up in this case.

Remark 6.1. In Cases (1) and (4) both possibilities α′ ≤ α and α′ > α may
occur [4].

Now, suppose that an entropy wave δ : P0P1 interacts with another wave at P1;
in this case, we already have a primary path ΓP

0 : P0 → P1. The paths due to
the interaction of δ with a 1-shock wave have been already defined in Case (4).
In the case δ interacts with a 1-rarefaction wave, the definitions are analogous
(see Lemma 4.3, Case (5)).

Then, t = tn. We suppose that the paths have been constructed up to the
interaction time t = tn. First, we define the generation order of a shock and
entropy wave γ. The front of γ belongs to a finite number N of paths, which
can be ordered by their increasing generation order as follows:

ΓP
1 , . . . ΓP

p , ΓS
p+1, . . . ΓS

N , for kP1 ≤ . . . ≤ kPp , kSp+1 ≤ . . . ≤ kSN . (6.3)
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Here kPm, kSm denote the generation orders of the front; we drop the indexes P
and S in the following. The generation order of γ is defined by by

kγ = min
1≤l≤N

{kl} . (6.4)

We now accomplish the construction of the decomposition by paths. Con-
sider a path Γ : P0 → P1 → · · · → Pn to t = tn; we first assume that Pn−1

and Pn are connected by a shock α. The front Pn−1Pn belongs to some paths
Γl, for 1 ≤ l ≤ N ; the path Γl has index (1, kl) and strength αl. Of course, the
path Γ is one of the Γl’s. By (6.3), the strength α is decomposed into

α =
N∑
l=1

αl.

Denote by α′ : PnPn+1, β
′ : PnP

′
n+1, δ

′ : PnP
′′
n+1 the waves produced by the

interaction of α with another wave at Pn. Let k∗ denote either max{kα, kβ}
or max{kα, kδ}. Below, we omit for brevity Cases (3) and (4), since they are
analogous to Case (1); see [5] for complete details on the algorithm.

(1): β + α → α′ + δ′ + β′. If α′ ≤ α, there exist 1 ≤ r ≤ N and 0 ≤ αr < αr

such that α − α′ = αr +
∑N

l=r+1 αl. We split Γr into the paths Γ
(1)
r and

Γ
(2)
r so that the orders of the paths are unchanged while their strengths

α
(1)
r and α

(2)
r are decomposed according to the proportion

α(2)
r : α(1)

r = αr : (αr − αr) . (6.5)

Then, we extend Γl, 1 ≤ l ≤ r − 1, and Γ
(1)
r to Pn+1 with orders and

strengths unchanged. The paths Γ
(2)
r and Γl, r + 1 ≤ l ≤ N , stop.

If α′ > α, we have α′−α = ϵD′αβ; we extend each Γl in the same direction
with the same strength and generate a secondary path ΓS

1 : Pn → Pn+1

with index (1, k∗ + 1) and strength ϵD′αβ.
If β′ > β, we have β′ − β = ϵD′αβ; we generate a secondary path ΓS

2 :
Pn → P′

n+1 with index (2, k∗+1) and strength ϵD′αβ. At last, an entropy
wave of strength |δ′| = ϵD′′

2αβ is generated and we have a secondary path
ΓS
0 : Pn → P′′

n+1 with index (0, k∗ + 1) and strength ϵM0D
′′
2αβ.

(6): ξ + α → α′ + δ′ + β′. No secondary path is generated in this case. As in
the first step, there are positive quantities ζ and D′

∗ satisfying (6.1); we
also fix ζ2 and ζ0 satisfying (6.2). Then, there are 1 ≤ N1 ≤ N2 ≤ N and
αN1 , αN2 with 0 ≤ αN1 < αN1 , 0 ≤ αN2 < αN2 such that

α′ =

N1∑
l=1

αl−αN1 , ζ2 = αN1+

N2∑
l=N1+1

αl−αN2 , ζ0 = αN2+
N∑

l=N2+1

αl. (6.6)

(a) We extend every Γl with 1 ≤ l ≤ N1 − 1 to Pn+1 with indices and
strengths unchanged. Primary paths remain primary and so secondary.

Then we split ΓN1 into Γ
(1)
N1

and Γ
(2)
N1

so that

α
(1)
N1

+ α
(2)
N1

= αN1 , α
(1)
N1

: α
(2)
N1

= (αN1 − αN1) : αN1 .
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Therefore α
(1)
N1

= αN1 − αN1 and α
(2)
N1

= αN1 . Let kN1 be the order of

ΓN1 in Pn−1Pn. We extend Γ
(1)
N1

to Pn+1 with index (2, kN1) and strength

α
(1)
N1

. Then we extend Γ
(2)
N1

to P′
n+1 with index (2, kN1 + 1) and strength

D′
∗α

(2)
N1

= D′
∗αN1 .

(b) Similarly, ΓN2 is split into Γ
(1)
N2

and Γ
(2)
N2

so that

α
(1)
N2

+ α
(2)
N2

= αN2 , α
(1)
N2

: α
(2)
N2

= (αN2 − αN2) : αN2 .

We extend the paths Γl forN1+1 ≤ l ≤ N2−1 to P′
n+1 with index (2, kl+1)

and strength D′
∗αl. We also extend Γ

(1)
N2

to Pn+1 with index (2, kN2 + 1)

and strength D′
∗α

(1)
N2

as well as Γ
(2)
N2

to P′′
n+1 with index (0, kN2 + 1) and

strength D′
∗α

(2)
N2

(entropy wave).

(c) At last we extend the paths Γl for l ≥ N2 + 1 to P′′
n+1 with index

(0, kl + 1) and strength D′
∗αl.

Now, we assume that Pn−1 and Pn are connected by an entropy wave δ,
which interacts with another wave at Pn and generates α′ : PnPn+1, β′ :
PnP

′
n+1 and δ′ : PnP

′′
n+1. In this case, there is a path Γ0 : Pn−1 → Pn. If

δ interacts with a 1-shock wave, we refer to the Case (4) above. If δ : Pn−1Pn

interacts with a 1-rarefaction wave we define the paths in a completely anal-
ogous way. Therefore, we have completed the construction of paths involving
only physical waves.

At last, we discuss the case of non-physical waves. The generation order of
a non-physical wave is defined as in [7]. About paths, if a shock wave α or an
entropy wave δ belongs to a path Γl and the interaction generates a non-physical
wave, then the path Γl is simply extended in the previous direction with the
same index and strength.

A collection of paths Γ = {Γl}, which are divided into primary paths ΓP =
{ΓP

l } and secondary paths ΓS = {ΓS
l }, is then defined up to the next interaction

time tn+1 and hence as long as the approximate solution exists. This concludes
the definition of the paths. Remark that the construction above implicitly define
the initial generation order k1 of a path, a quantity that was not previously fixed.

We now introduce analogous definitions for rarefaction waves, which however
are not related to paths.

We assign a generation order to the approximate rarefaction waves as fol-
lows; our definition slightly differs from that given in [7]. Recall that in the
approximate solutions a rarefaction wave of size θ is split into N = [θ/h] + 1
fronts, each of them having strength θ/N < h, [7]. We assign order 1 to any of
these rarefaction fronts issuing from t = 0.

Suppose that a rarefaction front ξ with generation order k interacts with
a wave θ with generation order k′ and the waves θ′1, δ

′, θ′2 are produced. If
θ′1 = ξ′, the generation order of ξ′ is defined to be k. If θ′2 = π′ and θ ̸= π,
its generation order is max{k, k′} + 1. Lemma 4.3 states that the interaction
of two shock waves of the same family, Case (3), and possibly that of a shock
wave and an entropy wave, Case (4), also generates a rarefaction wave. In these
cases, by denoting k, k′ the generation orders of α1, α2 or δ, α, respectively, the
generation order of π′ is defined to be max{k, k′}+ 1.
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When a rarefaction wave ξ of generation order k interacts with another
wave and produces ξ′, the amplitude of ξ′ can exceed h. In this case, we have
to divide ξ′ into ξ′1 + ξ′2 so that ξj ≤ h, j = 1, 2. That is the reason why we do
not construct paths for rarefaction waves. We will assign the same generation
order k to both ξ′j , j = 1, 2.

We call secondary rarefaction waves those rarefactions that are generated in
Cases (4), (5) and (10). Secondary rarefaction waves were called reflected in [5]
because of the special interaction patterns; we do not use this terminology here
because of the reflected rarefaction waves of Case (3), which need a particular
treatment.

By the above construction and definitions we deduce the following proposi-
tion, where we use the definition (5.15) of Q(P).

Proposition 6.1. The amount of secondary rarefaction waves or secondary
paths which are generated at an interaction point P is estimated, for each family,
by ϵQ(P).
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Figure 3: Generation orders for the cases in Lemma 4.3. Solid lines indicate
shock or entropy waves; broken lines represent rarefaction waves; dotted lines
denote either shock or rarefaction waves.

7 Estimates along paths

In this section we prove several results about the decay of waves along paths.
As we saw in the previous section, paths only involve shock or entropy waves;
we denote either of these waves by σ. By the estimates along paths we provide
a bound on the total amount of rarefaction waves.
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Let Γ : P0 → P1 → · · · → Pn be a path, with Pi occurring at time ti.
We denote by PΓ (t0,Γ) the point (respectively, the time) where the path Γ is
generated. We denote by cm, km and σm the type, generation order and strength
of the front Pm−1Pm in Γ, respectively; the sequences cΓ = {cm}, kΓ = {km}
and σΓ = {σm} are the type, generation order and strength of Γ. We consider
the path Γ as a Lipschitz curve x = Γ(t); then, the type, order and strength of Γ
are piecewise constant functions of t, denoted by cΓ(t), kΓ(t), σΓ(t), respectively.
Here we set σΓ(ti) = σΓ(ti−) for i = 1, 2, . . . , n, σΓ(t0,Γ) = σΓ(t1) and so on for
cΓ and kΓ. We also denote with a slight abuse of notation, for i = 1, . . . , n,

σΓ(Pi) = σΓ(ti−). (7.1)

We denote by Γ the collection of all paths. Moreover, for every shock or entropy
wave σ, we denote by Γσ the collection of paths which the front of σ belongs to.
We now state a result about the decomposition of waves, whose proof is obvious
by the construction of paths.

Lemma 7.1. Consider any approximate solution, a time t where no interaction
occurs, a shock or an entropy wave σ at time t. Then∑

Γ∈Γσ

σΓ(t) =

{
σ if σ is a shock,
M0|σ| if σ is an entropy wave.

. (7.2)

For typographical reasons we denote

c = D∗. (7.3)

Lemma 7.2. Consider any approximate solution and any path Γ : P0 → P1 →
· · · → Pn. Let km be the generation order and σm the strength of the front
Pm−1Pm in Γ. Then

km+1 = km ⇒ σm+1 = σm,
km+1 = km + 1 ⇒ σm+1 ≤ c σm .

Proof. The paths are constructed in such a way to satisfy the condition above.
In particular, formula (6.1) shows that σm+1 does not exceed c σm.

We now introduce the total amount of shock (and entropy) waves at time t:

L−(t) =
∑{

α(t) + β(t)
}
,

L(t) =
∑{

α(t) + β(t) +M0|δ(t)|
}
, (7.4)

where the sum is performed over all shock (and entropy, resp.) waves occurring
in the approximate solution at time t. Lemma 7.2 clearly implies the following
result.

Lemma 7.3 (Pathwise version of Nishida’s lemma, [16]). For any approximate
solution and t different from interaction times, we have:

1. σΓ(t) ≤ ckΓ(t)−kΓ(t
′)σΓ(t

′) for any Γ ∈ Γ and 0 ≤ t′ ≤ t,

2. L(t) =
∑

Γ∈Γ σΓ(t).
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For any Γ ∈ Γ we denote by t0,Γ, P0,Γ the time, resp. the point, at which Γ
is generated. Then by the above lemma

σΓ(t) ≤ ckΓ(t)−kΓ(t0,Γ)σΓ(t0,Γ) . (7.5)

Let t be different from interaction times. For k = 1, 2, . . . , we denote the
total amount of the strengths at time t of all primary paths whose generation
order at time t is k (resp., k and more) by

LP
k (t) =

∑
Γ∈ΓP , kΓ(t)=k

σΓ(t) , V P
k (t) =

∑
l≥k

LP
l (t) .

We also define for k ≥ 2

V S
k (t): the total amount at time t of the strengths of both secondary paths and

secondary rarefaction waves generated at times t′ ≤ t , whose generation
orders are larger than or equal to k.

We denote F (0) = F (O) and observe that by Lemma 5.3 we have

V S
k (t) ≤ F (0), (7.6)

for every k ≥ 2 and every t.

Proposition 7.1. For every approximate solution and k ≥ 1, we have

LP
k (t) ≤ ck−1L(0), (7.7)

V P
k (t) ≤ ck−1

1− c
L(0). (7.8)

Proof. If Γ ∈ ΓP then t0,Γ = 0. Since kΓ(0) = 1 we deduce σΓ(t) ≤ ckΓ(t)−1σΓ(0)
by (7.5). Then for any k ≥ 1,∑

Γ∈ΓP

kΓ(t)=k

σΓ(t) ≤ ck−1
∑

Γ∈ΓP

σΓ(0) = ck−1L(0).

Formula (7.8) follows by
∑

l≥k c
l−1 = ck−1

1−c .

Let us denote
F(0) = L(0) + F (0).

Proposition 7.2. For every approximate solution we have

L−(t) ≤ F(0). (7.9)

Proof. The amount of primary fronts for shock waves at t = 0 equals L−(0) ≤
L(0). If a secondary front ΓS of a shock wave is generated at point P, then the
strength of ΓS in that segment is less than ϵQ(P). As a consequence, the result
follows by Lemmas 7.1 and 5.3.

We now prove a lemma that is stronger than Lemma 5.3 because the estimate
is independent of ϵ. This result will be used to prove Proposition 8.1, which
shows that the approximate solution is defined for all 0 ≤ t < ∞.
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Lemma 7.4. Under the same assumptions of Lemma 5.2, we have∑
P

Q(P) ≤ 1

6
Q(0) +

cM3

6(1− c)
G∗F(0), (7.10)

where the summation is done over all the interaction points.

Proof. Let J ′ and J be space-like curves and assume that there is a single
interaction point P between J ′ and J .

In Cases (1), (3) and (4), by virtue of (5.18), (5.19) and (5.20), we deduce

6Q(P) ≤ Q(J)−Q(J ′). (7.11)

In Case (6), we proved in (5.21) that

M1αξ ≤ Q(J)−Q(J ′) + 2M3 (β
′ +M0|δ′|)G(J),

where β′, δ′ are outgoing waves generated by the interaction at P and denoted
from now on by β′(P), δ′(P), respectively. By (5.28), (5.29) and Lemma 5.2, we
obtain

9Q(P) ≤ Q(J)−Q(J ′) + 2M3 {β′(P) +M0|δ′(P)|}G(O). (7.12)

About Case (10), the outgoing 2-wave generated by the interaction is a
rarefaction wave π′; in the following, we denote both a shock and a rarefaction
wave by θ′. Summing up over all interaction points P between O and J ′, by
(7.11) and (7.12) we deduce∑

P betweenO and J′

6Q(P)

≤ Q(O)−Q(J ′) + 2M3G(O)
∑

P betweenO and J′

Cases (6)–(10)

{θ′(P) +M0|δ′(P)|} .

Next, we claim that ∑
P betweenO and J ′

Cases (6)–(10)

{θ′(P) +M0|δ′(P)|} ≤ c

1− c
F(0). (7.13)

Indeed, in Cases (6)–(10) we have θ′ +M0|δ′| ≤ cα by (4.14) and (7.3). Then,
by (7.5) we have ∑

P betweenO and J ′

Cases (6)–(10)

{θ′(P) +M0|δ′(P)|}

≤ c
∑
Γ∈Γ

∑
P∈Γ

σΓ(P)

≤ c
( ∑
Γ∈ΓP

+
∑
Γ∈ΓS

)(
σΓ(P0,Γ)

∑
P∈Γ

ckΓ(P)−kΓ(P0,Γ)
)
. (7.14)

In all summations above, we clearly understand that only interactions of type
(6)–(10) are involved. Let mΓ be the number of points P ∈ Γ; we notice that
mΓ is finite by Proposition 8.1.
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If Γ is a primary path, then kΓ(P0,Γ) = 1, t0,Γ = 0; by (7.5), (7.7) we deduce

∑
P∈Γ

ckΓ(P)−kΓ(P0,Γ) ≤
mΓ∑
j=1

cj−1 ≤ 1

1− c
, (7.15)

∑
Γ∈ΓP

σΓ(t0,Γ) ≤ L(0).

If Γ is a secondary path, by Lemma 5.3 we have∑
P∈Γ

ckΓ(P)−kΓ(P0,Γ) ≤
mΓ∑
j=0

cj ≤ 1

1− c
,

∑
Γ∈ΓS

σΓ(t0,Γ) ≤ 3ϵ
∑
P

Q(P) ≤ F (O).

The claim (7.13) follows. Since J ′ is an arbitrary space-like curve, we proved
the lemma.

By Lemma 4.3, the total amount of rarefaction waves generated by interac-
tions of type (3) is bounded from above by

D
∑

P:Case (3)

α1(P)α2(P) =
∑

P:Case (3)

Q(P). (7.16)

Condition (5.14) implies M0D2 ≤ D; then, also the total amount of entropy
paths generated by an interaction of type (3) is estimated by the right-hand
side of (7.16). Thus we have proved the following result.

Proposition 7.3. The total amount of rarefaction waves and entropy paths
generated by an interaction of type (3) is less than the right-hand side of (7.10).

Remark 7.1. The strength of a rarefaction wave may increase only in Cases
(2) or (5). Otherwise, either it does not change (Case (11)) or decreases (Cases
(7), (9), (10)).

New rarefaction waves are only generated in Cases (3), (4), (5) and (10).
We recall that rarefactions generated in Cases (4), (5) and (10) are called sec-
ondary rarefactions. We observe that in Case (3) the generated rarefaction wave
is only estimated by Q(P) and not by ϵQ(P).

We first analyze Case (3); the next proposition provides a result that is
slightly stronger than that of Proposition 7.3 and Lemma 6.1 in [3]. Notice
that we estimate as well the amount of paths generated in the interaction and
associated to entropy waves.

Proposition 7.4. Let k ≥ 2 and t not an interaction time. The total amount
of rarefaction waves of order larger than or equal to k, which are generated by
an interaction of type (3) in the time interval [0, t], is less than

DF(0)

2(1− c)2

{
ck−2

1− c
L(0) + V S

k−1(t)

}
. (7.17)

The total amount of entropy paths whose generation order is larger than or equal
to k and are generated by an interaction of type (3), is less than (7.17), with
D2 replacing D.
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Proof. We denote by {Pm} the collection of all interaction points in the time
interval [0, t] where

Case (3) occurs and max{kα1(Pm), kα2(Pm)} ≥ k − 1. (7.18)

Here, αj(Pm), for j = 1, 2, are the strengths of the shock waves incoming at
Pm, analogously to the notation above. The rarefaction waves (and the entropy
paths) of the statement are precisely those generated at such points Pm. By
Lemma 4.3 and the definition (6.4), the total amount of these rarefaction waves
(resp., entropy paths) is bounded from above by

D
∑
Pm

α1(Pm)α2(Pm). (7.19)

In the case of entropy paths, simply replace D above with D2. Then, we must
prove that (7.19) is less than (7.17). The same argument also covers the case of
the entropy paths.

Let Γαj (Pm) denote the collection of the paths composing αj(Pm), for j =
1, 2; the strength of a path Γj ∈ Γαj

(Pm) is denoted by σΓj (Pm). By Lemma

7.1 we have∑
Pm

α1(Pm)α2(Pm) ≤
∑
Pm

∑
Γ1∈Γα1 (Pm)

∑
Γ2∈Γα2 (Pm)

σΓ1
(Pm)σΓ2

(Pm)

≤ 1

2

∑
Γ∈Γ

∑
Pm∈Γ

σΓ(Pm)
∑

Γ∗∈Γ∗(Γ,Pm)

σΓ∗(Pm), (7.20)

where Γ∗(Γ,Pm) is the set of the paths Γ∗ interacting with the path Γ at Pm.
Fix a path Γ; since clearly

∪
Pm∈Γ Γ

∗(Γ,Pm) ⊂ Γ \ {Γ}, by reversing the order
of summations we find that∑

Pm∈Γ

σΓ(Pm)
∑

Γ∗∈Γ∗(Γ,Pm)

σΓ∗(Pm) ≤
∑

Γ∗∈Γ\{Γ}

∑
Pm∈Γ∩Γ∗

σΓ(Pm)σΓ∗(Pm).

(7.21)
Now, we consider any two points Pm,P′

m ∈ Γ ∩ Γ∗, with Pm ̸= P′
m, and

suppose that P′
m is consecutive to Pm. By this we mean there is no point

of the collection {Pm} belonging to Γ ∩ Γ∗ and lying between Pm and P′
m;

moreover, P′
m lies after Pm. It is impossible that both kΓ(Pm) = kΓ(P

′
m) and

kΓ∗(Pm) = kΓ∗(P′
m) occur. Then, if we move from Pm to P′

m along the path Γ
or Γ∗, either the generation order of Γ or Γ∗ increases by at least two or those
of both Γ and Γ∗ increase by at least one. Hence, by Lemma 7.2 we have∑

Pm∈Γ∩Γ∗

σΓ(Pm)σΓ∗(Pm) ≤
∑
j≥1

c2(j−1)σΓ(P0)σΓ∗(P0)

≤ 1

1− c2
σΓ(P0)σΓ∗(P0), (7.22)

where, with a slight abuse of notation, we denoted by P0 the first point of the
Pm’s in Γ∩Γ∗. By (7.18), we have either kΓ(P0) ≥ k− 1 or kΓ∗(P0) ≥ k− 1 (of
course both possibilities may occur). In order to simplify the notation in the
proof, we assume that the first possibility always occurs, namely that kΓ(P0) ≥
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k − 1; otherwise, simply replace Γ with Γ∗. Under the notation above we find
the estimate ∑

Γ,Γ∗∈Γ

σΓ(P0)σΓ∗(P0) ≤ F(0)

1− c

{
ck−2

1− c
L(0) + F(0)

}
.

Above, we split the sums into primary and secondary paths associated to shock
waves; the total amount of the former is bounded by L−(0), that of the latter
by F (0), because of (7.6). Together, they are bounded by F(0). The second
factor is deduced by (7.8) and the definition of V S

k−1(t).
This proves that (7.19) is less than (7.17) and concludes the proof.

Remark 7.2. We notice that (7.17) can be bounded as follows, by using (7.6):

DF(0)

2(1− c)2

{
ck−2

1− c
L(0) + V S

k−1(t)

}
≤ DF(0)2

2(1− c)3
. (7.23)

A byproduct of Proposition 7.4 concerns the total amount of rarefaction waves
produced by an interaction of type (3): it suffices to take k = 2 in (7.17) or
simply the right-hand side of (7.23). These bounds must be considered together
with that already provided in Proposition 7.3.

Cases (2) and (5) are considered below. We denote by ξ(t) the continuation
of the rarefaction ξ for times t beyond an interaction time t1. Therefore, for
instance, in Case (5) we have that ξ(t) = ξ′ just after the interaction and so on.

Proposition 7.5. Suppose that a 1-rarefaction wave ξ interacts at t = t1 with
either a 2-shock or an entropy wave σ. Let Γ be a path to which the front of
σ belongs. Then, no front of 2-shock or entropy wave interacting with ξ(t) at
t > t1 belongs to Γ.

Proof. Let t2 > t1 be the first time at which ξ(t) interacts with a wave σ′ whose
front belongs to Γ; the wave σ′ necessarily is a 1-shock wave.

If the 1-wave that outcomes from the interaction at t2 is a shock, then ξ(t)
no longer exists for t > t2. If it is a rarefaction, then the path Γ is continued
along the 2-shock front or entropy front; hence, the path does not cross ξ(t).

We denote

D̄ =
D1

M0

(
1 +

DG∗

8(1− c3)

)
.

Proposition 7.6. Consider a rarefaction wave ξ at t = t1. For t > t1 we have

ξ(t) ≤ eϵD̄F(0)ξ. (7.24)

Proof. For either a shock or an entropy wave σ we introduce the notation

Dσ =

{
D if σ = α, β,
D1 if σ = δ.

Let the 1-rarefaction ξ′ be the continuation of ξ after the interaction of ξ with
either a 2-shock wave (Case (2)) or an entropy wave (Case (5)) σ, see Remark
7.1. By Lemma 4.3 we find that

ξ′ ≤ (1 + ϵDσ|σ|)ξ.
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Hence, recalling what we pointed out before Proposition 7.5, we have

ξ(t) ≤
∏

σ=β,δ

(
1 + ϵDσ|σ|

)
ξ ≤ eϵ

∑
σ=β,δ Dσ|σ|ξ, (7.25)

where the product and the sum are performed over all waves β or δ which
interact with ξ(t′) at times t′ < t in an interaction of type (2) or (5), respectively.
We observe that every shock or entropy wave in that sum occurs there only once,
because of Proposition 7.5.

We now consider the sum in (7.25). First, we observe that D ≤ D1

M0
, because

of (5.28). We decompose the shock waves into primary and secondary paths;
we do the same for entropy waves but, in this case, we also need to take into
account the rarefaction waves generated in Case (3), see Proposition 7.4. We
obtain, by (7.23),

∑
σ=β,δ

Dσ|σ| ≤
D1

M0

{
F(0) +

DF(0)2

2(1− c)3

}
≤ D1

M0
F(0)

{
1 +

DG∗

8(1− c3)

}

and then (7.24) follows by (7.25).

We denote by Rk(t) (Wk(t)) the total amount of the strengths of all rarefac-
tion waves (of all waves, respectively) having generation order larger than or
equal to k at time t.

Proposition 7.7. If k ≥ 2 we have

Rk(t) ≤ DF(0)eϵD̄F(0)

2(1− c)(1− c2)

{
ck−2

1− c
L(0) + V S

k−1(t)

}
+ V S

k (t), (7.26)

Wk(t) ≤ ck−1

1− c
L(0) + V S

k (t)

+
DF(0)eϵD̄F(0)

2(1− c)(1− c2)

{
ck−2

1− c
L(0) + V S

k−1(t)

}
. (7.27)

Proof. We recall that the generation order of a rarefaction wave does not in-
crease in time after an interaction; as a consequence, the rarefaction waves
generated at time 0+ keep their generation order 1. Then (7.26) follows by
Propositions 7.4, 7.6 and the definition of V S

k (t).
In order to prove (7.27) we also need to take into account shock and entropy

waves. Then, (7.27) follows by (7.6) and (7.26).

8 Stability of Wave-Front Tracking Scheme

First, following Bressan [7], we prove that the approximate solution constructed
according to the algorithm in Section 3 is defined for all 0 ≤ t < ∞.

Proposition 8.1. Let I be the set of interaction points of an approximate solu-
tion. Then, the accurate Riemann solver is used at most a finite number of times
in I. As a consequence, the approximate solution is defined for all 0 ≤ t < ∞.
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Proof. The accurate Riemann solver is used when the strengths of the inter-
acting waves satisfy |θ′θ′′| ≥ ρ. Lemma 7.4 shows that the number of the
interaction points where this occurs is less than C/ρ, for a suitable C indepen-
dent of ϵ. Then, the number of physical fronts is finite. We emphasize that also
Lemma 7.4 gives a bound on the number of interaction points, which however
depends on ϵ.

Non-physical fronts are possibly generated when two physical fronts interact;
moreover, any two physical fronts interact only once. Thus, also the number of
non-physical fronts is finite.

Now, we estimate the total amount of secondary paths and secondary rar-
efaction waves in terms of the quadratic functionals. Let us denote for simplicity∑

≥k;A

γ θ =
∑

max{kγ ,kθ}≥k
γ,θ approaching

γ θ,

for k ≥ 1. We define, analogously to (5.4),

Qk(t) = M0M1

∑
≥k;A

(α+ β + ξ + π)|δ|

+ M1

∑
≥k;A

(ξα+ ξβ + πα+ πβ) + M2

∑
≥k;A

(α1α2 + αβ + β1β2),

where the summation is over the waves at time t. Then, we denote Q(t) = Q1(t),
similarly to (5.4). In a complete analogous way we define TVD(t) and TVH(t)
as in (5.6), (5.7). We also define

TV(t) = TVD(t) +M0TVH(t), Q±
k (t) =

∑
0<τ<t

[∆Qk(τ)]±,

where ∆Qk(τ) = Qk(τ+) − Qk(τ−) and τ runs over all interaction times; we
denoted by [x]± the positive and negative parts of x. At last, we denote

T̃V = supt>0 TV(t−), ṼS
k = supt>0 V

S
k (t), W̃k = supt>0 Wk(t), (8.1)

Q̃±
k =

∑
τ>0[∆Qk(τ)]±. (8.2)

We notice that

Q+
k (t)−Q−

k (t) =
∑

0<τ≤t

{[∆Qk(τ)]+ − [∆Qk(τ)]−} = Qk(t) ≥ 0 (8.3)

for k ≥ 2 and then Q−
k (t) ≤ Q+

k (t). The following lemma is a refinement of
Lemmas 5.2 and 5.3.

Lemma 8.1. Assume that a secondary rarefaction wave or a secondary path of
strength θ and order l ≥ 2 is generated at time τ . Then

θ ≤ 1
3ϵ[∆Ql−1(τ)]− . (8.4)

Proof. Consider for instance Case (1) and suppose that a secondary path of
order l is generated; then either α or β has generation order l − 1. Proceeding
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as in (5.17) but replacing
∑

with
∑

≥l−1;A we find, together with (5.18), that
∆Ql−1(τ) ≤ −7Dαβ. It follows from Proposition 6.1 that

θ ≤ ϵDαβ ≤ − 1
7ϵ∆Ql−1(τ).

The proof in Cases (2)–(5) and (10) is completely analogous.

Proposition 8.2. For k ≥ 2 we have

V S
k (t) ≤ eϵD̄F(0) ϵ

3

k−2∑
h=0

chQ−
k−h−1(t). (8.5)

Proof. First, suppose that a secondary path ΓS of order l is generated at time
τ < t. We claim that the contribution of ΓS to V S

k (t) is less than{
1
3ϵc

h[∆Qk−h−1(τ)]− if l = k − h ≤ k ,
1
3ϵ[∆Qk−1(τ)]− if l > k .

(8.6)

If l ≤ k, then l = k − h for some 0 ≤ h ≤ k − 2. The path ΓS contributes
to V S

k (t) only if it is continued in the time interval (τ, t) through at least h
interactions. By (7.5) and (8.4) we obtain the first estimate in (8.6).

If l > k, the amount of ΓS contributing to V S
k (t) is less than ϵ

3 [∆Ql−1(τ)]− ≤
ϵ
3 [∆Qk−1(τ)]− again by (8.4). This proves (8.6).

Then, the contribution of the secondary paths to V S
k (t) is bounded by

ϵ

3

k−2∑
h=0

∑
0<τ<t :

ΓS is generated

ch[∆Qk−h−1(τ)]− ≤ ϵ

3

k−2∑
h=0

chQ−
k−h−1(t). (8.7)

Next, suppose that at time τ < t a secondary rarefaction wave θ of order l
is generated; it contributes to V S

k (t) if and only if l ≥ k. In this case we have,
by (8.4),

θ ≤ 1
3ϵ[∆Ql−1(τ)]− ≤ 1

3ϵ[∆Qk−1(τ)]− . (8.8)

By (7.24) and (8.8), the contribution of the secondary rarefaction waves (2nd
RW) to V S

k (t) is bounded by

eϵD̄F(0) ϵ

3

∑
0<τ<t :

2nd RW is generated

[∆Qk−1(τ)]− ≤ eϵD̄F(0) ϵ

3
Q−

k−1(t). (8.9)

Above, the sum is performed over all times 0 < τ < t where a secondary
rarefaction wave is generated. Thus (8.5) follows by (8.7) and (8.9).

Next, we study the variation of Qk(t). For k ≥ 1, let Ik denote the set of
times where two waves γ, θ with max{kγ , kθ} = k interact. The interaction
patterns in Lemma 4.3 are denoted by

W1W2: a 1-wave and a 2-wave, Cases (1), (2);

W0W : a 1 or 2-wave and an entropy wave, Cases (4), (5);

SiSi: two shock waves of the same family, Case (3);
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SiRi: a shock wave and a rarefaction wave of the same family, Cases (6)–(10).

We notice that Case (11) is trivial. In the following Lemma 8.2, we denote
θ′ = β′ in Cases (6)–(9) and θ′ = π′ in Case (10), as in the previous section.
The estimates (8.10)–(8.12) are obtained by summing up the estimates obtained
in the possible interactions and must be read as follows: referring to (8.10), for
example, in an interaction W1W2 or W0W (SiSi, SiRi) only the first (second,
third, respectively) summand in braces appears. The notation SiRi (kα < k−1)
in (8.11) and (8.12) refers to the case SiRi when the order of the incoming shock
wave is less then k − 1.

Lemma 8.2. Let t be an interaction time and P the point where the interaction
occurs. We have the following estimates:

(i) if t ∈ I1 ∪ · · · ∪ Ik−2, for k ≥ 3, then

∆Qk(t) ≤ M3 {3ϵQ(P) + 3Dα1α2 + θ′ +M0|δ′|}Wk(t−); (8.10)

(ii) if t ∈ Ik−1, for k ≥ 2, then

∆Qk(t) ≤

≤


M3 {ϵ[∆Qk−1(t)]− + 3Dα1α2}TV(t−)

+M3 (θ
′ +M0|δ′|)Wk(t−) SiRi (kα < k − 1)

M3 {ϵ[∆Qk−1(t)]− + 3Dα1α2}TV(t−)

+M3 (θ
′ +M0|δ′|)TV(t−) otherwise;

(8.11)

(iii) if t ∈ Ik ∪ Ik+1 ∪ · · · , for k ≥ 1, then

∆Qk(t) ≤


M3 (θ

′ +M0|δ′|)Wk(t−)

+ αξ (ϵM3DTV(t−)−M1) SiRi (kα < k − 1)

M3 (θ
′ +M0|δ′|)TV(t−) otherwise.

(8.12)

Proof. If t ∈ I1∪· · ·∪Ik−2, k ≥ 3, by Lemma 4.3, (5.14), (7.6) and the notation
introduced before (7.27) we have

∆Qk(t) ≤


3ϵM3Q(P)Wk(t−) : W1W2, W0W

3DM3α1α2Wk(t−) : SiSi

M3(θ
′ +M0|δ′|)Wk(t−) : SiRi.

Hence, the estimate (8.10) follows by summing up the lines above.
If t ∈ Ik−1, k ≥ 2, by (4.6) we have

∆Qk(t) ≤



ϵM3[∆Qk−1(t)]−TV(t−) : W1W2, W0W

3DM3α1α2TV(t−) : SiSi

M3(β
′ +M0|δ′|)Wk(t−)

+ ϵM3DαξTV(t−) : SiRi (kα < k − 1)

M3(θ
′ +M0|δ′|)TV(t−) : SiRi (kα = k − 1),
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whence (8.11). We notice that the additional summand ϵM3DαξTV(t−) is only
due to Case (10).

Finally, we consider the case t ∈ Ik ∪ Ik+1 ∪ · · · , k ≥ 1. Recalling the proof
of Lemma 5.2 we deduce that

∆Qk(t) ≤


0 : W1W2, W0W, SiSi

(M3θ
′ +M1M0|δ′|)Wk(t−)

+ αξ (ϵM3DTV(t−)−M1) : SiRi (kα < k − 1)

(M3θ
′ +M1M0|δ′|)TV(t−) : SiRi (kα = k − 1)

The proof is complete.

Now, we carry out an iterative estimate for the quadratic functional Q̃+
k , see

(8.2). To this aim we define

κ = ϵM3T̃V < 1 and κ′ = ϵM3F(0) < 1. (8.13)

Proposition 8.3. For k ≥ 2 we have

Q̃+
k ≤ κQ̃+

k−1 +

(
1 + c

1− c
+

3D

2
F(0)

)
M3W̃kF(0)

+
(
ck−2L(0) + ṼS

k−1

)(
c+

3D

2
F(0)

)
M3

1− c
T̃V. (8.14)

Proof. We may assume that at each interaction time there is precisely one inter-
action [7]; then each interaction time τ uniquely corresponds to an interaction
point Pτ . It follows from Lemma 8.2 that, for k ≥ 3,

Q̃+
k ≤ M3W̃k

∑
I1∪···∪Ik−2

{
3ϵQ(Pτ ) + 3Dα1α2 + θ′ +M0|δ′|

}
+M3T̃V

∑
Ik−1

{
ϵ[∆Qk−1(τ)]− + 3Dα1α2

}
+M3T̃V

∗∗∑
Ik−1∪Ik∪···

{
θ′ +M0|δ′|

}
+M3W̃k

∗∑
Ik−1∪Ik∪···

{
θ′ +M0|δ′|

}
.

The summations are made over all interacting times τ and the estimates must
be read as we explained above Lemma 8.2. Moreover, we denoted with ∗ the
summation related to the case SiRi(kα < k − 1) and with ∗∗ otherwise, see
(8.11), (8.12).

Now, we estimate the sums appearing in the above formula. First, by Lemma
5.3 we deduce

3ϵ
∑

I1∪···∪Ik−2

Q(Pτ ) ≤ F (0).

On the other hand, by (8.3) we find that∑
Ik−1

[∆Qk−1(τ)]− ≤
∑
τ

[∆Qk−1(τ)]− ≤
∑
τ

[∆Qk−1(τ)]+ = Q̃+
k−1.
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Next, we claim that

∗∗∑
Ik−1∪Ik∪···

(θ′ +M0|δ′|) ≤
c

1− c

(
ck−2L(0) + ṼS

k−1

)
, (8.15)

∑
I1∪···∪Ik−2

(θ′ +M0|δ′|) +
∗∑

Ik−1∪Ik∪···

(θ′ +M0|δ′|) ≤
c

1− c
F(0), (8.16)

and also that ∑
I1∪···∪Ik−2

α1α2 ≤ F(0)2

2
, (8.17)

∑
Ik−1

α1α2 ≤ F(0)

2

(
ck−2

1− c
L(0) + ṼS

k−1

)
. (8.18)

The estimate (8.14) shall follow by the above estimates.
We first consider (8.15). We define Ih = {Pτ ; τ ∈ Ih} and proceed almost

exactly as in proving (7.14) in Lemma 7.4. We have

∗∗∑
P∈Ik−1∪Ik∪···

{
θ′(P) +M0|δ′(P)|

}
≤ c

∑
Γ∈Γ

∗∗∑
P∈Γ∩(Ik−1∪Ik∪··· )

σΓ(P).

For every P ∈ Γ ∩ (Ik−1 ∪ Ik ∪ · · · ), we have kΓ(P) ≥ k − 1 by the definition
of strength of a path given above (7.1). Let mΓ be the number of points P ∈
Γ ∩ (Ik−1 ∪ Ik ∪ · · · ). For the collection of primary paths we have

∑
Γ∈ΓP

∗∗∑
P∈Γ∩(Ik−1∪Ik∪··· )

σΓ(P) ≤
∑

Γ∈ΓP

σΓ(P0,Γ)
∗∗∑

P∈Γ∩(Ik−1∪Ik∪··· )

ckΓ(P)−kΓ(P0,Γ)

≤
∑

Γ∈ΓP

σΓ(P0,Γ)

mΓ∑
j=k−1

cj−1 ≤ L(0)ck−2

1− c
. (8.19)

For secondary paths we have∑
Γ∈ΓS

∑
P∈Γ∩(Ik−1∪Ik∪··· )

σΓ(P) ≤ ṼS
k−1.

Then, estimate (8.15) follows.
The proof of (8.16) is analogous: the first sum is estimated as in (7.14),

(7.15) and for the second one we exploit (7.8) with k = 2 and (7.6): the first
sum is estimated as in (7.14), (7.15) and for the second one we exploit (7.8)
with k = 2 and (7.6). More precisely,

∑
I1∪···∪Ik−2

(θ′ +M0|δ′|) +
∗∑

Ik−1∪Ik∪···
(θ′ +M0|δ′|)

≤
∑
P∈Γ

{
θ′(P) +M0|δ′(P)|

}
≤ c

( ∑
Γ∈ΓP

+
∑
Γ∈ΓS

)(
σΓ(P0,Γ)

∑
P∈Γ

ckΓ(P)−kΓ(P0,Γ)
)
.
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If Γ is a primary path, then

∑
P∈Γ

ckΓ(P)−kΓ(P0,Γ) ≤
∞∑
j=1

cj−1 ≤ 1

1− c
and

∑
Γ∈ΓP

σΓ(t0,Γ) ≤ L(0).

If Γ is a secondary path, then

∑
P∈Γ

ckΓ(P)−kΓ(P0,Γ) ≤
∞∑
j=0

cj ≤ 1

1− c
and

∑
Γ∈ΓS

σΓ(t0,Γ) ≤ ṼS
2 ≤ F (0).

This proves (8.16).
Next, we prove the estimate (8.18); the proof of (8.17) is analogous. The

proof is analogous to that of Proposition 7.4. We have, by Proposition 7.2,∑
P∈Ik−1

|α1(P)α2(P)| ≤ 1
2

∑
Γ∈Γ

∑
P∈Γ∩Ik−1

σΓ(P)
∑

Γ′∈Γ(P)\Γ

σΓ′(P)

≤ 1
2

∑
Γ∈Γ

∑
Γ′∈Γ\Γ

∑
P∈Γ∩Γ′∩Ik−1

σΓ(P)σΓ′(P)

≤ F(0)

2

( ∑
Γ∈ΓP

+
∑
Γ∈ΓS

) ∑
P∈Γ∩Ik−1

σΓ(P)

≤ F(0)

2

(
ck−2

1− c
L(0) + ṼS

k−1

)
,

by arguing as in proving (8.15). This proves (8.18).

In the following we assume that ϵTV(0) is sufficiently small, and then κ and
κ′ in (8.13) do. As a consequence, we assume that

eϵD̄F(0) ≤ 2. (8.20)

Proposition 8.4. If ϵTV(0) is sufficiently small, then, for some c < λ2 < 1
we have

ṼS
k = O(1)λk

2 . (8.21)

Proof. We denote Zk = ϵ(Q̃+
k + cQ̃+

k−1 + · · ·+ ck−1Q̃+
1 ). By (8.21) we deduce

ϵQ̃+
k = Zk − cZk−1 (8.22)

and by (8.5) and (8.20) we have

ṼS
k ≤ 2

3
Zk−1. (8.23)

Therefore it is sufficient to prove (8.21) with ṼS
k replaced by Zk−1. We plug

(8.23) into (7.27) to get

W̃k ≤ ck−2

1− c
L(0)

(
c+

DF(0)

(1− c)(1− c2)

)
+

2

3
Zk−1 +

2DF(0)

3(1− c)(1− c2)
Zk−2.
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By multiplying (8.14) by ϵ and taking again into account (8.22) we deduce

Zk − cZk−1 ≤
(
κ+

2

3
Bκ′

)
Zk−1 +

(
−cκ+BEκ′ +

2

3

κC

1− c

)
Zk−2

+

(
ABκ′ +

L(0)C

1− c
κ

)
ck−2, (8.24)

where
A = L(0)

1−c

(
c+ DF(0)

(1−c)(1−c2)

)
, B = 1+c

1−c +
3DF(0)

2 ,

C = c+ 3DF(0)
2 , E = 2DF(0)

3(1−c)(1−c2) .

We rewrite inequality (8.24) as

Zk − aZk−1 + bZk−2 ≤ dck−2, (8.25)

for

a = c+ κ+ 2
3Bκ′, b = cκ−BEκ′ − 2

3
κ

1−cC, d = ABκ′ + L(0)
1−c Cκ.

If both κ and κ′ are sufficiently small, then the equation λ2 − aλ + b = 0 has
two real roots |λ1| < λ2 with 0 < c < λ2 < 1. Since Zk ≥ 0, we deduce from the
inequality (8.25)

Zk = O(1)λk−1
2

which proves the proposition.

Proof of Theorem 1.3: The proof is analogous to that of Theorem 2.1 in
Asakura-Corli [5]; then, only a sketch is reported here. Estimates of physical
waves are obtained by Proposition 7.1 and Proposition 8.4. About estimates of
non-physical waves, let ϵ denote an arbitrary non-physical wave. As in Propo-
sition 11.10 in Asakura-Corli [5] it follows that |ϵ| ≤ C1ρ and∑

ϵ∈NP
kϵ≥k

|ϵ| ≤ C2 sup
t≥0

{
V P
k (t) + V S

k (t)
}

for some positive constants C1 and C2.

Proposition 8.5. For given h > 0, there exists ρ > 0 such that the approximate
solution constructed by the front tracking scheme satisfies∑

ϵ∈NP

|ϵ| ≤ h. (8.26)

Proof. The proof goes as in Bressan [7]. Let N0 be the number of shock waves
at t = 0. Then there exists a polynomial P (ξ, η) such that, by exploiting the
above inequalities, we have∑

ϵ∈NP

|ϵ| =
∑
ϵ∈NP

kϵ≤k−1

|ϵ|+
∑
ϵ∈NP
kϵ≥k

|ϵ| = O(1)P (N0, h
−1)ρ+O(1)λk

2 .

Hence, we choose k such that O(1)λk
2 ≤ h

2 and then ρ so that (8.26) holds.

By Proposition 8.26 we have a uniform bound of non-physical waves and
hence of TVUh(·, t). The existence of a global solution is proved by the usual
argument in Bressan [7] and Smoller [20].
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