Representing uncertain information is very important for modeling real world domains. Recently, the DISPONTE semantics has been proposed for probabilistic description logics. In DISPONTE, the axioms of a knowledge base can be annotated with a set of variables and a real number between 0 and 1. This real number represents the probability of each version of the axiom in which the specified variables are instantiated. In this paper we present the algorithm BUNDLE for computing the probability of queries from DISPONTE knowledge bases that follow the $\mathcal{ALC}$ semantics. BUNDLE exploits an underlying DL reasoner, such as Pellet, that is able to return explanations for queries. The explanations are encoded in a Binary Decision Diagram from which the probability of the query is computed. The experiments performed by applying BUNDLE to probabilistic knowledge bases show that it can handle ontologies of realistic size and is competitive with the system PRONTO for the probabilistic description logic P-$\mathcal{SHIQ}$(D).
BUNDLE: A reasoner for probabilistic ontologies
RIGUZZI, Fabrizio;LAMMA, Evelina;BELLODI, Elena;ZESE, Riccardo
2013
Abstract
Representing uncertain information is very important for modeling real world domains. Recently, the DISPONTE semantics has been proposed for probabilistic description logics. In DISPONTE, the axioms of a knowledge base can be annotated with a set of variables and a real number between 0 and 1. This real number represents the probability of each version of the axiom in which the specified variables are instantiated. In this paper we present the algorithm BUNDLE for computing the probability of queries from DISPONTE knowledge bases that follow the $\mathcal{ALC}$ semantics. BUNDLE exploits an underlying DL reasoner, such as Pellet, that is able to return explanations for queries. The explanations are encoded in a Binary Decision Diagram from which the probability of the query is computed. The experiments performed by applying BUNDLE to probabilistic knowledge bases show that it can handle ontologies of realistic size and is competitive with the system PRONTO for the probabilistic description logic P-$\mathcal{SHIQ}$(D).I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.