In millisecond pulsars the existence of the Coriolis force allows the development of the so-called Rossby oscillations (r-modes) which are know to be unstable to emission of gravitational waves. These instabilities are mainly damped by the viscosity of the star or by the existence of a strong magnetic field. A fraction of the observed millisecond pulsars are known to be inside Low Mass X-ray Binaries (LMXBs), systems in which a neutron star (or a black hole) is accreting from a donor whose mass is smaller than 1 M⊙. Here we show that the r-mode instabilities can generate strong toroidal magnetic fields by inducing differential rotation. In this way we also provide an alternative scenario for the origin of the magnetars. © 2009 IOP Publishing Ltd.

Magnetic fields generated by r-modes in accreting millisecond pulsars

CUOFANO, Carmine;DRAGO, Alessandro
2009

Abstract

In millisecond pulsars the existence of the Coriolis force allows the development of the so-called Rossby oscillations (r-modes) which are know to be unstable to emission of gravitational waves. These instabilities are mainly damped by the viscosity of the star or by the existence of a strong magnetic field. A fraction of the observed millisecond pulsars are known to be inside Low Mass X-ray Binaries (LMXBs), systems in which a neutron star (or a black hole) is accreting from a donor whose mass is smaller than 1 M⊙. Here we show that the r-mode instabilities can generate strong toroidal magnetic fields by inducing differential rotation. In this way we also provide an alternative scenario for the origin of the magnetars. © 2009 IOP Publishing Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1684679
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact