Mitochondria are key decoding stations of the apoptotic process. In support of this view, a large body of experimental evidence has unambiguously revealed that, in addition to the well-established function of producing most of the cellular ATP, mitochondria play a fundamental role in triggering apoptotic cell death. Various apoptotic stimuli cause the release of specific mitochondrial pro-apoptotic factors into the cytosol. The molecular mechanism of this release is still controversial, but there is no doubt that mitochondrial calcium (Ca2+) overload is one of the pro-apoptotic ways to induce the swelling of mitochondria, with perturbation or rupture of the outer membrane, and in turn the release of mitochondrial apoptotic factors into the cytosol. Here, we review as different proteins that participate in mitochondrial Ca2+ homeostasis and in turn modulate the effectiveness of Ca2+-dependent apoptotic stimuli. Strikingly, the final outcome at the cellular level is similar, albeit through completely different molecular mechanisms: a reduced mitochondrial Ca2+ overload upon pro-apoptotic stimuli that dramatically blunts the apoptotic response. © 2012 Elsevier Ltd.

Mitochondrial Ca2+ and apoptosis

GIORGI, Carlotta;BALDASSARI, Federica;BONONI, Angela;BONORA, Massimo;DE MARCHI, Elena;MARCHI, Saverio;MISSIROLI, Sonia;PATERGNANI, Simone;RIMESSI, Alessandro;PINTON, Paolo
2012

Abstract

Mitochondria are key decoding stations of the apoptotic process. In support of this view, a large body of experimental evidence has unambiguously revealed that, in addition to the well-established function of producing most of the cellular ATP, mitochondria play a fundamental role in triggering apoptotic cell death. Various apoptotic stimuli cause the release of specific mitochondrial pro-apoptotic factors into the cytosol. The molecular mechanism of this release is still controversial, but there is no doubt that mitochondrial calcium (Ca2+) overload is one of the pro-apoptotic ways to induce the swelling of mitochondria, with perturbation or rupture of the outer membrane, and in turn the release of mitochondrial apoptotic factors into the cytosol. Here, we review as different proteins that participate in mitochondrial Ca2+ homeostasis and in turn modulate the effectiveness of Ca2+-dependent apoptotic stimuli. Strikingly, the final outcome at the cellular level is similar, albeit through completely different molecular mechanisms: a reduced mitochondrial Ca2+ overload upon pro-apoptotic stimuli that dramatically blunts the apoptotic response. © 2012 Elsevier Ltd.
2012
Giorgi, Carlotta; Baldassari, Federica; Bononi, Angela; Bonora, Massimo; DE MARCHI, Elena; Marchi, Saverio; Missiroli, Sonia; Patergnani, Simone; Rime...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1647084
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 365
  • ???jsp.display-item.citation.isi??? 343
social impact