This paper proposes a built-in self-test/self-diagnosis procedure at start-up of an on-chip network (NoC). Concurrent BIST operations are carried out after reset at each switch, thus resulting in scalable test application time with network size. The key principle consists of exploiting the inherent structural redundancy of the NoC architecture in a cooperative way, thus detecting faults in test pattern generators too. At-speed testing of stuck-at faults can be performed in less than 1200 cycles regardless of their size, with an hardware overhead of less than 11%.

Exploiting Network-on-Chip Structural Redundancy for A Cooperative and Scalable Built-In Self-Test Architecture

STRANO, Alessandro;LUDOVICI, Daniele;FAVALLI, Michele;BERTOZZI, Davide
2011

Abstract

This paper proposes a built-in self-test/self-diagnosis procedure at start-up of an on-chip network (NoC). Concurrent BIST operations are carried out after reset at each switch, thus resulting in scalable test application time with network size. The key principle consists of exploiting the inherent structural redundancy of the NoC architecture in a cooperative way, thus detecting faults in test pattern generators too. At-speed testing of stuck-at faults can be performed in less than 1200 cycles regardless of their size, with an hardware overhead of less than 11%.
2011
9781612842080
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1431310
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 6
social impact