Antarctic krill (Euphausia superba) inhabit a region with strong seasonality in several parameters, such as photoperiod, light intensity, extent of sea ice, and food availability. In particular, seasonal changes in environmental light regimes have been shown to strongly influence krill metabolism, representing control signals for seasonal regulation of physiology of this key Southern Ocean species. Here, we report the identification of a cryptochrome gene, a cardinal component of the clockwork machinery in several organisms. EsCRY appears to be an ortholog of mammalian-like CRYs and clusters with the insect CRY2 subfamily. EsCRY has the canonical bipartite CRY structure, with a conserved N-terminal domain and a highly divergent C-terminus, that bears several binding motifs, some of them shared with insect CRY2 and others peculiar for EsCRY. We have evaluated the temporal expression of Escry both at mRNA and protein levels in individuals harvested from the Ross Sea at different times throughout the 24 h cycle during the Antarctic summer. We observed a daily fluctuation in abundance for Escry mRNA in the head, with high levels around 06:00 h, which is not mirrored by a cycle in the corresponding protein. Our findings represent a first step toward establishing the presence of an endogenous circadian time-keeping mechanism that might allow this organism to synchronize its physiology and behavior to the Antarctic light regimes.

A cry from the krill

BERTOLUCCI, Cristiano
Penultimo
;
R. Costa
Ultimo
2010

Abstract

Antarctic krill (Euphausia superba) inhabit a region with strong seasonality in several parameters, such as photoperiod, light intensity, extent of sea ice, and food availability. In particular, seasonal changes in environmental light regimes have been shown to strongly influence krill metabolism, representing control signals for seasonal regulation of physiology of this key Southern Ocean species. Here, we report the identification of a cryptochrome gene, a cardinal component of the clockwork machinery in several organisms. EsCRY appears to be an ortholog of mammalian-like CRYs and clusters with the insect CRY2 subfamily. EsCRY has the canonical bipartite CRY structure, with a conserved N-terminal domain and a highly divergent C-terminus, that bears several binding motifs, some of them shared with insect CRY2 and others peculiar for EsCRY. We have evaluated the temporal expression of Escry both at mRNA and protein levels in individuals harvested from the Ross Sea at different times throughout the 24 h cycle during the Antarctic summer. We observed a daily fluctuation in abundance for Escry mRNA in the head, with high levels around 06:00 h, which is not mirrored by a cycle in the corresponding protein. Our findings represent a first step toward establishing the presence of an endogenous circadian time-keeping mechanism that might allow this organism to synchronize its physiology and behavior to the Antarctic light regimes.
2010
Mazzotta, G. M.; De Pittà, C.; Benna, C.; Tosatto, S. C. E.; Lanfranchi, G.; Bertolucci, Cristiano; Costa, R.
File in questo prodotto:
File Dimensione Formato  
CBI_2010.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 590.03 kB
Formato Adobe PDF
590.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1397616
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 28
social impact