The "Cold Spot" in the CMB sky could be due to the presence of an anomalous huge spherical underdense region - a "Void" - of a few hundreds Mpc/h radius. Such a structure would have an impact on the CMB two-point (power spectrum) and three-point (bispectrum) correlation functions not only at low-l, but also at high-l through Lensing, which is a unique signature of a Void. Modeling such an underdensity with an LTB metric, we show that for the power spectrum the effect should be visible already in the WMAP data only if the Void radius is at least L gtrsim 1 Gpc/h, while it will be visible by the Planck satellite if L gtrsim 800 Mpc/h. We also speculate that this could be linked to the high-l detection of an hemispherical power asymmetry in the sky. Moreover, there should be non-zero correlations in the non-diagonal two-point function. For the bispectrum, the effect becomes important for squeezed triangles with two very high l's: this signal can be detected by Planck if the Void radius is at least L gtrsim 400 Mpc/h, while higher resolution experiments should be able to probe the entire parameter space. We have also estimated the contamination of the primordial non-Gaussianity f_NL due to this signal, which turns out to be negligible.

The Cold Spot as a Large Void: Lensing Effect on CMB Two and Three Point Correlation Functions

MASINA, Isabella;NOTARI, Alessio
2009

Abstract

The "Cold Spot" in the CMB sky could be due to the presence of an anomalous huge spherical underdense region - a "Void" - of a few hundreds Mpc/h radius. Such a structure would have an impact on the CMB two-point (power spectrum) and three-point (bispectrum) correlation functions not only at low-l, but also at high-l through Lensing, which is a unique signature of a Void. Modeling such an underdensity with an LTB metric, we show that for the power spectrum the effect should be visible already in the WMAP data only if the Void radius is at least L gtrsim 1 Gpc/h, while it will be visible by the Planck satellite if L gtrsim 800 Mpc/h. We also speculate that this could be linked to the high-l detection of an hemispherical power asymmetry in the sky. Moreover, there should be non-zero correlations in the non-diagonal two-point function. For the bispectrum, the effect becomes important for squeezed triangles with two very high l's: this signal can be detected by Planck if the Void radius is at least L gtrsim 400 Mpc/h, while higher resolution experiments should be able to probe the entire parameter space. We have also estimated the contamination of the primordial non-Gaussianity f_NL due to this signal, which turns out to be negligible.
2009
Masina, Isabella; Notari, Alessio
File in questo prodotto:
File Dimensione Formato  
Isabella_Masina_2009_J._Cosmol._Astropart._Phys._2009_035.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 950.35 kB
Formato Adobe PDF
950.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
0905.1073.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 627.23 kB
Formato Adobe PDF
627.23 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1389615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact