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Abstract: The “Cold Spot” in the CMB sky could be due to the presence of an anomalous huge
spherical underdense region - a “Void” - of a few hundreds Mpc/h radius. Such a structure would
have an impact on the CMB two-point (power spectrum) and three-point (bispectrum) correlation
functions not only at low ℓ, but also at high ℓ through Lensing, which is a unique signature of a
Void. Modeling such an underdensity with an LTB metric, we show that for the power spectrum the
effect should be visible already in the WMAP data only if the Void radius is at least L & 1 Gpc/h,
while it will be visible by the Planck satellite if L & 500 Mpc/h. We also speculate that this could
be linked to the high-ℓ detection of an hemispherical power asymmetry in the sky. Moreover, there
should be non-zero correlations in the non-diagonal two-point function. For the bispectrum, the
effect becomes important for squeezed triangles with two very high ℓ’s: this signal can be detected
by Planck if the Void radius is at least L & 300 Mpc/h, while higher resolution experiments should
be able to probe the entire parameter space. We have also estimated the contamination of the
primordial non-Gaussianity fNL due to this signal, which turns out to be negligible.

PACS numbers: 98.80.Cq,98.80.Es, 98.65.Dx, 98.62.Sb

I. INTRODUCTION

One of the anomalies present in the recent WMAP [1] measurement of the Cosmic Microwave Background

(CMB) is the so-called Cold Spot [2, 3]: a large spherical region on an angular scale of about 10◦ that

appears to be anomalously cold. The probability that such a pattern would derive from Gaussian primordial

fluctuations is estimated to be about 1.8%, using the most conservative criteria [2, 3]. While this could

still be a statistical fluke, some authors have put forward the idea that it could be due instead to some

object on the line-of-sight between us and the Last Scattering Surface (LSS) [4, 5].

In a previous paper [6] we have explored some observational consequences of the proposed idea that the

Cold Spot is due to a “Void” [4, 5] , i.e. to an anomalously large underdense region of some unknown origin.

Traveling through a Void, photons are redshifted due to the fact that the gravitational potential is not

exactly constant in time, the so-called Rees-Sciama (RS) effect [7]. We have thus computed observational

quantities associated to the RS effect, focusing in particular on the statistical properties of the CMB: the

two-point (power spectrum) and three-point (bispectrum) correlation functions.

In the present paper we extend the analysis of [6] by considering also the Lensing effect, namely the
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deflection that occurs to a CMB photon traveling through a Void. The interesting fact is that this deflection

is only present if there is something on the line of sight, while it would be absent if the Spot is just

a statistical fluke of the primordial large-scale fluctuations, thus representing a unique signature on the

CMB maps, which can rule out or confirm the existence of such a Void. Moreover the Lensing effect is

correlated with the RS effect, which can be seen in the some observables (such as the three-point correlation

function [6]).

The paper is organized as follows. In section II we consider the lensing produced by an underdense

region and compute its profile and its decomposition in spherical harmonics. In section III we compute

the contribution to the two-point function. In section IV we compute the contribution to the bispectrum,

and evaluate the signal-to-noise ratio and the possible contamination on a primordial non-Gaussian signal.

In section V we draw our conclusions. In appendix A we discuss how our result change upon inclusion

of a cosmological constant, while in appendix B we review the flat-sky approximation for the primordial

bispectrum.

While this paper was in preparation, a similar approach has been taken by [8], who have studied the

lensing effect from a Void (and also from a texture), showing that high-resolution experiments, which focus

on a small area of the sky, should be able to detect it. We briefly comment on this result in section III.

II. A VOID IN THE LINE OF SIGHT: REES-SCIAMA AND LENSING EFFECTS

As in [6], we consider the following cosmological configuration: an observer looks at the CMB through

a spherical Void of radius L, located at comoving distance D from us in the direction of the ẑ axis. We

assume that the Void does not intersect the LSS and that we are not inside it. The observer receives

from the LSS the CMB photons, whose fluctuations we assume to be adiabatic, nearly-scale invariant and

Gaussian - as those generated e.g. by the usual inflationary mechanism. We will also assume that the

location of the Void in the sky is not correlated at all with the primordial temperature fluctuations coming

from inflation; this is true, for example, if such structure comes from a different process, such as nucleation

of bubbles. For simplicity we disregard the effect of a cosmological constant. We show in appendix A how

the expressions can change, after inclusion of a cosmological constant.

We model the Void’s inhomogeneous region via a spherically symmetric Lemâıtre-Tolman-Bondi (LTB)

metric, matched to a Friedmann-Lemâıtre-Robertson-Walker (FLRW) flat model [6]. Our density profile

turns out to be the one of a ”compensated” Void, i.e. the underdense central region is surrounded by a

thinner external overdense region. This follows from the matching conditions, requiring that the Void does

not distort the FLRW metric at large distance1. Note that, due to the compensation, there will be no

lensing effect on the photons which travel outside the LTB region. The Void is then characterized by the

following quantities: i) the distance D from us and its centre, ii) its radius L (namely the radius of the

inhomogeneous LTB region), iii) the shape of the Void density profile and iv) the amplitude of the density

contrast, which we parameterize the value at the centre δ0 (which is defined to be negative). Note that,

since the subtended angle 2θL is small, we have θL ≈ L/D.

Given our configuration, the observer detects one particular realization of the primordial Gaussian per-

1 For example, if the Void comes from a primordial bubble of true vacuum, this is a physically consistent requirement: in
fact a bubble would have a thin wall with localized gradient energy, that compensates for the lower energy contained in
the true vacuum in the interior region.
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turbations on the LSS plus the secondary effects due to this anomalous structure. As in [6], we want to

give the theoretical prediction for the two-point and three-point correlation functions, in order to compare

with the observations. We write the observed temperature fluctuation as the sum of three components:

∆T (n̂)

T
=

∆T (n̂)

T

(P )

+
∆T (n̂)

T

(RS)

+
∆T (n̂)

T

(L)

, (1)

where (P) stands for primordial, (RS) for Rees-Sciama and (L) for Lensing. Each fluctuation is defined as:

∆T (n̂)

T

(i)

≡ T (i)(n̂)− T̄ (i)

T
, i = P,RS, L, (2)

with the bar representing the angular average over the sky and T =
∑

i T̄
(i) = 2.73K. The RS temperature

fluctuation is smaller than the primordial one, but larger than the temperature fluctuation induced by

Lensing.

A. Rees-Sciama Temperature Profile

We now briefly review [6] how to compute the shape for ∆T (RS)/T . In [6] we have modeled the Void in

the line of sight as a perturbation of a FLRW metric with a Newtonian potential Φ:

ds2 = a2(τ)
[
−(1 + 2Φ)dτ2 + (1− 2Φ)dxidxj

]
, (3)

where τ is the conformal time and where xi are dimensionless comoving coordinates. The potential Φ(r)

is given as a function of the dimensionless comoving radial coordinate r by:

Φ(r) = − 9 31/3

5 (2π)2/3

∫ r

rL

k(r̄)r̄dr̄ , r ≤ rL =
1

2(6π)1/6
LH0 , (4)

while Φ(r) vanishes for r ≥ rL. Here H0 is the present Hubble constant H0 = h/3000 Mpc−1. The

arbitrary function k(r) represents the local curvature and determines the shape of the density profile.

This approximation is valid as long as k(r) is small. The only constraints on this function come from

the smoothness of the density profile at the centre (which dictates k′(0) = 0, where the prime denotes a

derivative with respect to the r coordinate) and from the requirement that the LTB patch matches to a

flat FLRW universe (k′(L) = k(L) = 0). We have chosen arbitrarily the function k(r) as follows:

k(r) = k0

[

1−
(

r

rL

)α]2

. (5)

In the rest of this paper we focus on the case α = 4 but, as shown in [6], the results for other cases, e.g.

α = 2, are not qualitatively different.

The RS temperature fluctuation is effectively described by two parameters: its amplitude at the centre

of the Void, A = ∆T (ẑ)(RS)/T , and its angular extension, i.e. the diameter of the cold region, σ. Clearly,

σ is smaller than 2θL, which is the angle subtended by the full LTB region. The shape of the temperature

profile (hence σ) is determined by the shape of the Void density profile. As for the amplitude A, we recall

from [6] that:

A ≈ 0.5 δ20 (LH0)
3

(

1− DH0

2

)

= 0.5 δ20
(LH0)

3

√
1 + z

. (6)
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So, A turns out to depend on the radius L and the density contrast δ0, with a dependence on D = L/ tan θL

which is mild unless the Void is close to the LSS. Note that the expression in eq. (6) fully agrees with the

one obtained in [5], except for our pre-factor which is three times larger, probably due to the different shape

of the profile (see also appendix A). We fix the numerical values of A and σ phenomenologically. Clearly,

this leaves a degeneracy in the choice of the physical parameters, since we have three of them (D, L and

δ0) and only two observational constraints (A and σ). In order to fix a range for the numerical values of

the amplitude A, we proceed as in [6] relying on the values given by [9], as follows: for the temperature at

the centre we use the range T = −(190± 80)µK, which means A = (7± 3)× 10−5; for the angular size σ

of the cold region, we choose the particular but representative values 6◦, 10◦ and 18◦ (which correspond

respectively to θL = 7◦, 11◦, 20.5◦).

B. Lensing Temperature Profile

In this paper, our goal is to compute the contribution ∆T (L)/T to the temperature fluctuation, due to

the lensing of pre-existing primordial temperature fluctuations. The temperature fluctuation due to lensing

is usually computed in a gradient expansion [11, 13], where the total fluctuation is given by

∆T

T
(n̂) ∼ ∆T (P )

T
(n̂) + ∂i

∆T (P )

T
(n̂)∂iΘ(n̂) + ∂i∂j

∆T (P )

T
(n̂)∂jΘ(n̂)∂iΘ(n̂) + ... . (7)

We call the correction terms ∆T (L) (1)/T and ∆T (L) (2)/T , where the superscripts denote the perturbative

orders. In order to compute this, we need Θ, the so-called Lensing potential, which is related to the

gravitational potential Φ by the following line integral [10, 11, 13]:

∇⊥Θ = −2

∫ τ0

τLSS

dτ
τLSS − τ

τLSS
∇⊥Φ , (8)

where τO and τLSS denote respectively the conformal time at the observer and at the LSS; ∇⊥ stands for

a gradient in the direction transverse to the line of sight. Now, given the gravitational potential, we can

numerically compute the Lensing potential. The way we proceed is that we approximate the trajectory

as a straight line and we compute the integral, as a function of the observational angle θ (in spherical

coordinates, having fixed the ẑ axis towards the centre of the Void). The gravitational potential Φ is zero

outside the LTB patch and positive at the centre (since we have a Void). Therefore its transverse gradient

is negative, which means that the displacement vector ∇⊥Θ is positive (and vanishes at θ = 0 and θ = θL).

Then, we integrate ∇⊥Θ(θ) along the θ angle and we get Θ(θ), which turns out to be negative.

Now, the amplitude of the quantity ∇⊥Θ scales linearly with δ0 (since the effect is computed in the linear

theory) and quadratically with the scale of the structure L: ∇⊥Θ ∝ δ0 (LH0)
2 . Removing the gradient, it

turns out that Θ scales as L3. The final equation for Θ can be written as2:

Θ(θ) = Θ0p(θ) , Θ0 ≈ 1

1.4
|δ0| (LH0)

3 1

DH0
, (9)

where numerically p(θ) is given in fig. 1.

2 In the published version of this paper we neglected the dependence on D coming from eq. (8). The inclusion of this
dependence actually goes in the direction of strengthening the results as compared to the published version.
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FIG. 1: Plot of the Lensing profile p(θ) as a function of θ/θL, for the curvature function given in eq. (5) and with
α = 4.

For reader’s convenience, we also give here an approximate polynomial interpolation of the profile:

p(θ) = −1− 0.257

(
θ

θL

)

+ 4.076

(
θ

θL

)2

− 2.848

(
θ

θL

)3

, θ < θL . (10)

Clearly p(θ) vanishes for θ ≥ θL.

Similarly to the RS temperature fluctuation, also the Lensing fluctuation, ∆T (n̂)(L)/T , is described by

two parameters, namely those that characterize the Lensing potential Θ(θ): its amplitude Θ0 at the centre

of the Void and its angular extension, determined by θL. The amplitude Θ0 can be determined by choosing

specific values for L and δ0 in eq. (9). Note, however, that the dependence of Θ0 on L and δ0 is different

from the one of A: so it is possible for two Voids to have the same RS effect but different Lensing effects.

Keeping fixed A as indicated by the observations (A = (7 ± 3)× 10−5) and recalling that D = L/ tan θL,

we can calculate δ0 from eq.(6) by choosing L and θL:

|δ0| ≈
√

2A

1− LH0

2 tan θL

(LH0)
−3/2 . (11)

as shown in the left plot of fig.2 for σ = 18◦, 10◦ and 6◦ (from bottom to top). Note that since |δ0| ≤ 1,

one finds a lower bound on L, with a very mild dependence on σ, given by:

L ≥ Lmin ≈ (2A)1/3

H0
≈ (150+30

−20)
Mpc

h
. (12)

This minimum value of L corresponds to the configuration in which the Void is closest to us.

We can put eq.(11) into eq.(9), obtaining

Θ0 ≈
(

A LH0 tan
2 θL

1− LH0

2 tan θL

)1/2

. (13)

as shown in the right plot of fig. 2. This figure shows that the dependence of Θ0 upon σ turns out to be

not too strong. For instance, the minimum value Θ0 = 3 × 10−4 can be achieved with L ≈ 200 Mpc/h

for σ = 6◦, while the value Θ0 = 10−3 can be achieved with L = 200 − 500 Mpc/h for σ = 18◦ and

L = 500− 800 Mpc/h for σ = 10◦.

However, given a fixed value of θL, both δ0 and Θ0 blow up at a certain L. This maximum value of L

corresponds to the configuration in which the Void is very close to the LSS, without touching it. This fact
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FIG. 2: Left: |δ0| as a function of L and for σ = 18◦, 10◦ and 6◦, from bottom to top. Right: Plot of Θ0 as a
function of L. The curves corresponds, from left to right, to σ = 6◦, 10◦, 18◦. In both plots, the shaded regions are
obtained by varying A in the range (7± 3)× 10−5.

can be understood via the following argument. In a matter dominated Universe the angular size diameter

distance of the LSS is DALSS
≈ 2/(zLSSH0) ≈ 5.45Mpc/h, where zLSS = 1100. Hence, the maximum

value of L today is

Lmax ≈ zLSS θL DALSS
, (14)

where θL ≈ L/D. For σ = 18◦ (θL = 20.5◦), σ = 10◦ (θL = 11◦) and σ = 6◦ (θL = 7◦) this corresponds

respectively to Lmax about 2100Mpc/h, 1145Mpc/h, and 730Mpc/h. These values are in agreement with

fig.2. Close to the LSS, the amplitude A is suppressed by the factor 1−DH0/2 of eq.(6). Since by definition

|δ0| ≤ 1, there are values of L such that the amplitude A does not reach the value 7×10−5. For this reason

there is a maximal value for Θ0, as shown in fig. 2.

On the other hand, when the Void is small, i.e. it is in the position closest to us, Θ0 reaches its minimum

allowed value, which is about 3 × 10−4. Clearly, we find this minimum because we are imposing A to be

in the range suggested by present Cold Spot observations, A = (7± 3)× 10−5: had we imposed a smaller

value of A, we would have obtained a smaller minimum value for Θ0.

Note also that assuming a different shape for the profile (see eq. (5)) could lead to a different pre-factor

in eq. (6): instead of 0.5 we could have a pre-factor ranging from 0.05 to 1.8. This would just translate in

a proper order-unity rescaling of eq. (13) and fig. 2.

C. Decomposition in spherical harmonics

Given the temperature anisotropy ∆T (i)(n̂)/T and the Lensing profile Θ(n̂), we will need their spherical

harmonic decompositions, defined respectively as:

a
(i)
ℓm ≡

∫

dn̂
∆T (i)(n̂)

T
Y ∗
ℓm(n̂) , bℓm ≡

∫

dn̂ Θ(n̂) Y ∗
ℓm(n̂) . (15)

Since the RS temperature anisotropy and the Lensing profile are axially symmetric and since we have

chosen the ẑ axis to point towards the centre of the Void, the only non-vanishing a
(RS)
ℓm and bℓm are those

with m = 0 and which, in addition, are real. In the left plot of fig. 3 we show the ratio a
(RS)
ℓ0 /A as a function

of the multipole ℓ. From bottom to top, the curves correspond to a Cold Spot with diameter σ = 18◦, 10◦
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and 6◦ respectively (for more details see [6]). In the right plot of fig. 3 we show the corresponding bℓ0/Θ0

coefficients of the Lensing potential Θ(n̂).

0 20 40 60 80 100

-0.06

-0.04

-0.02

0.00

a
(RS)
ℓ0

A

ℓ 0 10 20 30 40 50 60 70

-0.08

-0.06

-0.04

-0.02

0.00

bℓ0
Θ0

ℓ

FIG. 3: Plot of a
(RS)
ℓ0 /A and bℓ0/Θ0, as a function of the multipole ℓ for σ = 18◦, 10◦, 6◦ (from bottom to top).

Given the bℓ0 coefficients in (15), we may compute the first order a
(L) (1)
ℓm coefficients for the Lensing

temperature profile ∆T (L) (1)/T , via the expression [10]:

a
(L) (1)
ℓm =

∑

ℓ′,m′,ℓ′′

G−mm′0
ℓ ℓ′ℓ′′(−1)m+m′ ℓ′(ℓ′ + 1)− ℓ(ℓ+ 1) + ℓ′′(ℓ′′ + 1)

2
a
(P )∗
ℓ′−m′bℓ′′0 , (16)

where we have also used the fact that bℓ′′ m′′ ∝ δm′′0, and that they are real numbers. We have introduced

the Gaunt integrals, which are given in terms of the Wigner 3-j symbols [10] as follows:

Gm1m2m3

ℓ1 ℓ2 ℓ3
≡
√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3
0 0 0

)(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)

. (17)

The Gaunt integrals are non-zero only if the sum of the upper indices is zero, so we can set m′ = m in

eq.(16) obtaining:

a
(L) (1)
ℓm =

∑

ℓ′,ℓ′′

G−mm0
ℓ ℓ′ℓ′′

ℓ′(ℓ′ + 1)− ℓ(ℓ+ 1) + ℓ′′(ℓ′′ + 1)

2
a
(P )∗
ℓ′−mbℓ′′0 . (18)

We recall that 〈a(P )
ℓm 〉 = 0, where the brackets stand for a statistical average over an ensemble of possible

realizations of the Universe - or, equivalently, an average over many distant uncorrelated observers. Given

eq.(18), it turns out that the same applies to the lensing coefficients, namely 〈a(L) (1)
ℓm 〉 = 0.

The expression for the second order coefficients a
(L) (2)
ℓm has been derived e.g. in [14], eq. (46).

III. TWO-POINT FUNCTIONS

Given a temperature profile with its aℓm coefficients one can compute the associated two-point correlation

functions. In general, given a single set of aℓm coefficients, the two-point correlation function (power

spectrum) is defined via the Cℓ’s coefficients as

Cℓ ≡
ℓ∑

m=−ℓ

|aℓm|2
2ℓ+ 1

. (19)
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Note that this definition ensures that the Cℓ’s do not depend on the choice of the coordinate system on

the sphere. Therefore, as in [6], we may keep our ẑ axis aligned with the centre of the Void. In our case

aℓm = a
(P )
ℓm + a

(RS)
ℓm + a

(L)
ℓm and, in order to face with the experimentally observed values for Cℓ, we have to

estimate the theoretical prediction for 〈Cℓ〉.
For a primordial Gaussian signal the two-point correlation functions are given by:

〈a(P )
ℓ1m1

a
(P ) ∗
ℓ2m2

〉 = δℓ1ℓ2δm1m2〈C
(P )
ℓ1

〉 , (20)

where the 〈C(P )
ℓ 〉 are predicted by some mechanism (e.g. inflation) that can generate primordial Gaussian

fluctuations. In [6] we already computed the contribution to the power spectrum given by the RS effect,

〈a(RS)a(RS)∗〉. Here we consider the Lensing term, which leads to additional contributions of the form

〈a(P )a(L)∗〉 (PL contribution) and 〈a(L)a(L)∗〉 (LL contribution). The PL contribution actually contains

two terms: one is first order in the Lensing potential, 〈a(P )a(L) (1)∗〉, and one is second order 〈a(P )a(L) (2)∗〉.
It turns out that the latter term is of the same order as the 〈a(L) (1)a(L) (1)∗〉 contribution and with opposite

sign, leading to a cancellation3, as happens in Lensing from usual primordial Gaussian profiles [13].

Given the expression in eq.(18), we may compute the first order contribution to the two-point correlation

function due to the primordial and Lensing temperature fluctuations, as follows:

〈a(P )
ℓ1m1

a
(L) (1)∗
ℓ2m2

〉 =
∑

ℓ′,ℓ′′

G−m2m20
ℓ2 ℓ′ ℓ′′

ℓ′(ℓ′ + 1)− ℓ2(ℓ2 + 1) + ℓ′′(ℓ′′ + 1)

2
(−1)m2〈a(P )

ℓ1m1
a
(P )∗
ℓ′m2

〉bℓ′′0

= δm1m2(−1)m2〈C(P )
ℓ1

〉
∑

ℓ′′

G−m2m20
ℓ2 ℓ1 ℓ′′

ℓ1(ℓ1 + 1)− ℓ2(ℓ2 + 1) + ℓ′′(ℓ′′ + 1)

2
bℓ′′0 . (21)

The diagonal term leads to the following contribution to the Cℓ’s,

〈C(PL)(1)
ℓ 〉 ≡

ℓ∑

m=−ℓ

〈a(P )
ℓm a

(L) (1)∗
ℓm 〉

2ℓ+ 1
, (22)

which turns out to vanish, as one can see substituting the explicit expression for the Gaunt integral and

using a well known property of the Wigner 3-j symbols:

〈C(PL)(1)
ℓ 〉 = 〈C(P )

ℓ 〉
∑

ℓ′′

√

2ℓ′′ + 1

4π

(
ℓ ℓ ℓ′′

0 0 0

)

ℓ′′(ℓ′′ + 1)bℓ′′0
∑

m

(−1)m
(

ℓ ℓ ℓ′′

−m m 0

)

︸ ︷︷ ︸

=δℓ′′0

= 0 . (23)

The non-diagonal terms are quite interesting: in fact (21) leads to a correlation between different ℓ’s. The

correlations are small, but they are present also at high ℓ’s. In fact any ℓ1 and ℓ2 will be correlated as long

as |ℓ1 − ℓ2| . 60, because the Gaunt integrals in (21) are nonzero if |ℓ2 − ℓ1| < ℓ′′ and the bℓ′′0 coefficients

are non-zero for ℓ . 60 (for the values of σ relevant for the Cold Spot, see fig. 3). This signal could be of

interest when looking at high-resolution experiments such as Planck, because it could reveal the existence

of the large Void through the Lensing effect. An interesting formalism to analyze these correlations in a

rotational invariant way would be to introduce the so-called ”Bipolar power spectrum” [12], which is a

combination of the non-diagonal aℓm’s, which generalizes the Cℓ’s. The Bipolar power spectrum is zero

for Gaussian fields, but it has a contribution due to cosmic variance. It would be interesting to apply this

analysis to our case and we postpone this to future work.

3 We thank A. Challinor for pointing out this fact.
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The pure Lensing contribution to the power spectrum, defined as

〈C(LL)
ℓ 〉 ≡

ℓ∑

m=−ℓ

〈a(L)(1)
ℓm a

(L)(1) ∗
ℓm 〉

2ℓ+ 1
, (24)

upon substitution with the expression in eq.(18), turns out to be:

〈C(LL)
ℓ 〉 =

∑

ℓ1,ℓ2

2ℓ1 + 1

4π

[
ℓ1(ℓ1 + 1)− ℓ(ℓ+ 1) + ℓ2(ℓ2 + 1)

2

]2(
ℓ ℓ1 ℓ2
0 0 0

)2

(bℓ20)
2 〈C(P )

ℓ1
〉 . (25)

Note that this expression agrees with the last term of eq. (62) of [14], using the fact that the power

spectrum of the Lensing potential in our case is b2ℓ 0/(2ℓ+ 1). In addition to this term we have to add the

term 〈a(P )
ℓm a(L) (2)〉, which is also given in eq. (62) and (63) of [14], and which is equal to −ℓ(ℓ+1)R 〈C(P )

ℓ 〉,
where

R ≡ 1

8π

∑

ℓ

ℓ(ℓ+ 1)b2ℓ 0 , (26)

which can be easily computed and gives the result

R ≈ 0.16Θ2
0 (27)

Therefore the final result for the correction ∆Cℓ to the power spectrum is given by [13, 14]:

∆Cℓ = −ℓ(ℓ+ 1)R〈C(P )
ℓ 〉+ 〈C(LL)

ℓ 〉 . (28)

The first term is a multiplicative correction to the primordial power spectrum and the constant R can be

interpreted as the average of the square of the deflection angle [13]. The perturbative treatment of Lensing

is justified as long as this correction is small with respect to 〈C(P )
ℓ 〉, that is ℓ(ℓ + 1)R ≪ 1. This means

that the approximation is good until some ℓmax, which is given in our case, by:

ℓmax ∼ R−1/2 ∼ 2.5/Θ0 .

This is a good approximation for ℓmax . 2000, provided that Θ0 . 10−3. In order to go to higher

resolutions one should include the Lensing effect in a non-perturbative way, see e.g. [13].

The second term in eq. (28) is a convolution: it can transfer power from large to small scales and in

general can smooth some of the primordial peak structure. The two terms are similar in magnitude but

with opposite signs, and they cancel out with a precision of about 10−3, leaving an oscillatory correction.

The final result for the ratio ∆Cℓ/〈C(P )
ℓ 〉 is shown in the left plot of fig. 4 as a function of the multipole

ℓ, assuming a specific value for the amplitude of the Lensing potential, namely the minumum allowed one,

Θ0 = 3× 10−4. Note that for different values of Θ0 one has simply to multiply the results in fig. 4 by the

factor Θ2
0/(9× 10−8).

For an experiment whose sensitivity goes up to some ℓmax, the signal-to-noise ratio associated with the

pure Lensing contribution is given by:

(
S

N

)2

LL

=
∑

2≤ℓ≤ℓmax

∆C2
ℓ

σ2
ℓ

, (29)

where σ2
ℓ is the cosmic variance of the power spectrum: σ2

ℓ ∼ 2/(2ℓ+ 1) 〈C(P )
ℓ 〉2. In general σ2

ℓ should

contain also the experimental noise, but we have just cutoff the sum at the ℓmax corresponding to the
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FIG. 4: Left: Plot of ∆Cℓ/〈C

(P )
ℓ

〉 as a function of the multipole ℓ and with the minumum allowed value Θ0 =
3 × 10−4. Right: Plot of (S/N)LL as a function of the multipole ℓ. The shaded region is obtained by varying A
in the range (7 ± 3) × 10−5. For the lower curve we have taken L = 200Mpc/h and σ = 6◦, which corresponds
- see fig.2 - to Θ0 = (3.1+.6

−.7) × 10−4; for the middle curve we have taken L = 400Mpc/h and σ = 10◦, namely

Θ0 = (7.4+1.4
−1.8)×10−4; for the upper curve we have taken L = 800Mpc/h for σ = 18◦, namely Θ0 = (2± .5)×10−3 .

Both curves are a good approximation only up to ℓmax ∼ 2.5/Θ0, while for higher ℓ there is an O(10%) error, due
to the fact that the gradient approximation breaks down [13].

experimental sensitivity. The signal-to-noise ratio is displayed in the right plot of fig. 4 for various Void

configurations. Note that (S/N)LL scales as Θ2
0.

Fig. 4 shows that, if one assumes that the CMB Cold Spot is due to the RS effect of a Void with central

temperature fluctuation A = (7± 3)× 10−5, then very high-resolution CMB experiments could detect Θ0:

WMAP could see a signal only in the extreme case if Θ0 is bigger than about 3×10−3 (which corresponds to

a σ of at least 10◦ and L & 1000Mpc/h, see fig. 2), while Planck could go down to 10−3, which corresponds

to L & 500Mpc/h for σ = 10◦. In order to be able to detect smaller Voids, one should look at the Cold Spot

region with a higher resolution experiment (such as the planned Atacama Cosmology Telescope [15] or the

South Pole Telescope [16]): e.g. going up to ℓ ∼ 5000 seems necessary to detect Voids with L ∼ 300Mpc/h

and σ = 6◦.

Moreover note that, clearly, if there is such an increase in the power spectrum due to a single Void,

this would be localized in the Cold Spot region: therefore, masking this area the effect should be absent.

It is worth also mentioning that there could be other Voids of similar, or smaller, size in the sky, (for

example [17] points out out that there might be other cold and hot spots of similar size in the Southern

hemisphere). This would lead to similar contributions to be added to the power spectrum, with different

amplitudes.

An intriguing consequence of our analysis is that, if the Void is large enough, its Lensing signal could

possibly be linked to the recent claimed detection of a hemispherical power asymmetry [18, 19] in the

WMAP data, which extends also to high multipoles (ℓ = 2 − 600). While the low-ℓ power spectrum

asymmetry could be linked to the existence of large structures (due to the RS effect, as discussed in [6]),

the fact that the signal is not limited to low multipoles could be explained by the lensing effect of such

objects. Indeed, the direction of the center of the hemisphere with the largest power happens to be close

to the location of the Cold Spot. The amplitude of the claimed effect [19] is of order δCℓ/Cℓ ∼ 10−3, which

would be compatible with our effect (see fig. 4) if Θ0 is of order of a few times 10−3, which corresponds to

L ∼ 1000Mpc/h. Therefore, it is observationally important to determine whether there is an increase in

small-scale power, with the shape we predict in fig. 4, which could be linked to a huge Void, or possibly to
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several Voids and structures on large scales in the sky.

We may, finally, mention that the recent paper [8] has proposed to estimate the amplitude of the lensing

effect by looking directly at ∆T (L)/T , instead of looking at a quadratic estimator such as 〈C(LL)
ℓ 〉. This

leads to the consequence that the signal-to-noise ratio is linear in the 〈C(LL)
ℓ 〉’s, instead of containing its

squares, as happens for our eq. (29). The maximal value of the lensing potential amplitude of [8] coincides

with our Θ0 for L = 350Mpc/h and δ0 = 0.3, namely Θ0 = (7 ± 4) × 10−4. Note however that [8] is

considering a different geometry: a non-compensated cylinder of radius 150Mpc and transverse length

200Mpc. The signal Sℓ in eq. (13) of [8] is similar in structure to one of our terms, the 〈C(LL)
ℓ 〉 in eq. (25):

in fact they turn out to have a very similar shape, although our 〈C(LL)
ℓ 〉’s are smaller by a factor of order

unity. However, the existence of an additional correction of the type 〈a(P ) a(L) (2)〉 may affect, as in our

case, the conclusions of [8], since it might lead to a cancellation with a precision of order 10−3.

IV. BISPECTRUM

After having computed the aℓm coefficients and the two-point correlation functions we may estimate the

impact of a large Void on the bispectrum coefficients. In [6] we have considered the bispectrum due to the

RS effect only, while in the present paper we focus on effects due to lensing.

The basic quantities are the Bm1m2m3

ℓ1 ℓ2 ℓ3
coefficients, defined as:

Bm1m2m3

ℓ1 ℓ2 ℓ3
≡ aℓ1m1 aℓ2m2 aℓ3m3 . (30)

These quantities are coordinate-dependent, so we define (in analogy with the Cℓ’s coefficients), the angularly

averaged bispectrum

Bℓ1ℓ2ℓ3 =
∑

m1,m2,m3

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)

Bm1m2m3

ℓ1 ℓ2 ℓ3
. (31)

One can show, using the properties of the Wigner 3-j symbols [10], that this combination does not depend

on the chosen z-axis, so these are the quantities that we can use to make predictions. For convenience we

keep our z-axis along the direction of the centre of the Void. Then we perform the statistical averaging

of the primordial perturbations. As we have discussed in [6], using eqs. (30) and (15) we get a sum of 27

terms. However, we want to give a prediction, i.e. compute statistical averages 〈Bℓ1ℓ2ℓ3〉, and several terms

have zero average. As we have said, a crucial assumption that we make is that the coefficients a
(RS)
ℓ0 are not

stochastic quantities, which means that the location of the Void in the sky is not correlated at all with the

primordial temperature fluctuations coming from inflation. Note that this is a conservative assumption:

if there is some correlation, and barring cancellations, the non-gaussianity could be much more important

since some terms would be non-zero. Under this assumption, we have shown in [6], that the two leading

terms are

〈B(RS)
ℓ1ℓ2ℓ3

〉 =
∑

m1,m2,m3

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)

〈a(RS)
ℓ1m1

a
(RS)
ℓ2m2

a
(RS)
ℓ3m3

〉 (32)

and

〈B(PLRS)
ℓ1ℓ2ℓ3

〉 =
∑

m1,m2,m3

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)

〈a(P )
ℓ1m1

a
(L)
l2m2

a
(RS)
l3m3

〉+ (5 permutations) . (33)

The first one has been studied in detail in [6]. We now consider the second.
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A. Signal-to-Noise ratio

In this subsection we compute the contribution to 〈Bℓ1ℓ2ℓ3〉 due to the coupling between the Primordial-

Lensing and RS effects, as follows:

〈Bm1m2m3

ℓ1 ℓ2 ℓ3
〉(PLRS) = f(1, 2, 3) + f(2, 1, 3) + f(1, 3, 2) + f(3, 1, 2) + f(2, 3, 1) + f(3, 2, 1) ,

(34)

f(i, j, k) = 〈a(P )
ℓimi

a
(L)
ℓjmj

a
(RS)
ℓkmk

〉 .

Substituting the explicit expressions for the Lensing coefficients, eq.(18), we get:

f(i, j, k) =
∑

ℓ′,ℓ′′

〈a(P )
ℓimi

a
(P )∗
ℓ′−mj

〉G−mjmj0
ℓj ℓ′ ℓ′′

ℓ′(ℓ′ + 1)− ℓj(ℓj + 1) + ℓ′′(ℓ′′ + 1)

2
bℓ′′0a

(RS)
ℓk0

δmk0

= 〈C(P )
ℓi

〉δmk0δmi−mj
a
(RS)
ℓk0

∑

ℓ′′

ℓi(ℓi + 1)− ℓj(ℓj + 1) + ℓ′′(ℓ′′ + 1)

2
Gmi−mi0

ℓjℓiℓ′′
bℓ′′0 , (35)

where we have used the fact that 〈a(P )
ℓ1m1

a
(P )∗
ℓ′−m2

〉 = 〈C(P )
ℓ1

〉δℓ1ℓ′δm1−m2 .

The angularly averaged bispectrum is given by:

〈B(PLRS)
ℓ1ℓ2ℓ3

〉 =
∑

m1m2m3

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)

〈Bm1m2m3

ℓ1ℓ2ℓ3
〉 , (36)

and can be written as

〈B(PLRS)
ℓ1ℓ2ℓ3

〉 = F (1, 2, 3) + F (3, 1, 2) + F (2, 3, 1) + (−1)ℓ1+ℓ2+ℓ3(F (2, 1, 3) + F (1, 3, 2) + F (3, 2, 1)) ,

(37)

F (i, j, k) =
∑

mi,mj ,mk

(
ℓi ℓj ℓk
mi mj mk

)

f(i, j, k) .

Substituting the expression for the Gaunt integral in (35) we find

F (i, j, k) = 〈C(P )
ℓi

〉a(RS)
ℓk0

∑

ℓ′′

√

(2ℓj + 1)(2ℓi + 1)(2ℓ′′ + 1)

4π

(
ℓj ℓi ℓ′′

0 0 0

)
ℓi(ℓi + 1)− ℓj(ℓj + 1) + ℓ′′(ℓ′′ + 1)

2

× bℓ′′0
∑

mi

(
ℓi ℓj ℓk
mi −mi 0

)(
ℓj ℓi ℓ′′

mi −mi 0

)

︸ ︷︷ ︸

=
δ
ℓkℓ′′

2ℓk+1

(38)

so that, finally,

F (i, j, k) = 〈C(P )
ℓi

〉a(RS)
ℓk0

√

(2ℓj + 1)(2ℓi + 1)

4π(2ℓk + 1)

(
ℓj ℓi ℓk
0 0 0

)
ℓi(ℓi + 1)− ℓj(ℓj + 1) + ℓk(ℓk + 1)

2
bℓk0 . (39)

It is customary to define a reduced bispectrum bℓ1ℓ2ℓ3 via the following:

Bℓ1ℓ2ℓ3 =

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3
0 0 0

)

bℓ1ℓ2ℓ3 . (40)

We may then easily compute, using (40), the 〈b(PLRS)
ℓℓℓ 〉 coefficients:

〈b(PLRS)
ℓℓℓ 〉 = 〈B(PLRS)

ℓℓℓ 〉
√
4π

(2ℓ+ 1)3/2

(
ℓ ℓ ℓ
0 0 0

)−1

=
3

2
(1 + (−1)3ℓ)

ℓ(ℓ+ 1)

2ℓ+ 1
〈C(P )

ℓ 〉a(RS)
ℓ0 bℓ0 .
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FIG. 5: The 〈b
(PLRS)
ℓℓℓ

〉 coefficients - with ℓ even - due to Primordial-Lensing-RS for angular diameter σ = 18◦, 10◦, 6◦

from left to right. We assumed a Void with Θ0 = 3× 10−4. The solid line shows the primordial contribution with
fNL = 1.

Note that 〈b(PLRS)
ℓℓℓ 〉 = 0 if ℓ is odd. The result for the 〈b(PLRS)

ℓℓℓ 〉 with ℓ even is shown in fig. 5, taking

Θ0 = 3× 10−4 and, from left to right, σ = 18◦, 10◦, 6◦. The 〈b(PLRS)
ℓℓℓ 〉 coefficients look comparable to the

primordial non-Gaussianity with fNL of order unity (the solid line is obtained with fNL = 1) and they are

non-zero for low ℓ.

As can be seen by inspecting (37) and (39), 〈B(PLRS)
ℓ1ℓ2ℓ3

〉 is non-zero provided that one of the ℓ indices is

low, say ℓ . 60 for σ ≥ 6◦ (see fig.3). This means that, for an high resolution experiment as WMAP or

Planck, which goes up to very high ℓ, there are many non-zero coefficients, with ℓk . 60 and arbitrary ℓi

and ℓj. The only constraint on ℓi and ℓj is given by the triangular condition of the Wigner 3-j symbols

(which vanish unless |ℓi − ℓj | ≤ ℓk ≤ |ℓi + ℓj|, for any ℓi, ℓj and ℓk).

We may indeed compute the Signal-to-Noise (S/N) ratio for the PLRS effect. For a signal labeled by i,

this is defined as [10]:

(S/N)i =
1

√

F−1
ii

, Fii =
∑

2≤ℓ1≤ℓ2≤ℓ3≤ℓmax

(B
(i)
ℓ1ℓ2ℓ3

)2

σ2
ℓ1ℓ2ℓ3

. (41)

Here σ2
ℓ1ℓ2ℓ3

is the cosmic variance of the bispectrum

σ2
ℓ1ℓ2ℓ3 ∼ 〈Cℓ1〉〈Cℓ2〉〈Cℓ3〉∆ℓ1ℓ2ℓ3 , (42)

where ∆ℓ1ℓ2ℓ3 = 1, 2, or 6 respectively if all ℓ’s are different, if only two of them are equal or if they are

all equal. The 〈Cℓ〉’s are the sum of the CMB power spectrum plus the power spectrum of the noise of the

detector. In general at some ℓmax the noise becomes dominant, while below it 〈Cℓ〉 is dominated by the

primordial noise: 〈Cℓ〉 ≈ 〈C(P )
ℓ 〉.

The result for (S/N)PLRS is shown in fig. 6, assuming that the detector noise is negligible. Note that

this ratio scales as the product AΘ0 and is nearly independent on σ. Indeed, even though the coefficients

a
(RS)
l0 and bl0 display a dependence on the angle σ (see fig. 3), we have found that the dependence of

(S/N)PLRS on σ is very weak for 6◦ ≤ σ ≤ 18◦. Keeping A fixed - the shaded region corresponds to letting

A vary in the range (7 ± 3)× 10−5 - the Lensing signal is clearly bigger the larger Θ0 (hence L) is. From

left to right, the three panels in fig. 6 show (S/N)PLRS in the case that L = 800, 400, 200 Mpc/h (we have

chosen for illustration various values of σ, corresponding to Θ0 = (2 ± .5)× 10−3, Θ0 = (7.4+1.4
−1.8)× 10−4,

Θ0 = (3.1+.6
−.7)× 10−4. One can see that this signal is qualitatively different from the signal induced by the
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FIG. 6: The Signal-to-Noise ratio for the Primordial-Lensing-RS coupling. The shaded regions are obtained by
varying A = (7 ± 3) × 10−5. For the right plot we have taken L = 200Mpc/h and σ = 6◦, which corresponds
- see fig.2 - to Θ0 = (3.1+.6

−.7) × 10−4; for the middle plot we have taken L = 400Mpc/h and σ = 10◦, namely

Θ0 = (7.4+1.4
−1.8)× 10−4; for the left plot we have taken L = 800Mpc/h for σ = 18◦, namely Θ0 = (2± .5)× 10−3.

pure RS contribution (see fig. 6 of ref. [6]) which becomes constant for ℓmax & 50. In fact, now the effect

is tiny for small ℓmax, but it is sizable when ℓmax is large. As a result, the total (S/N)PLRS increases with

the sensitivity of the experiment, the physical reason being that any ℓ is lensed by the Void, also the small

scale ones.

As it can be seen from the plot, the ratio (S/N)PLRS summed over about 1900 multipoles (the maximal

resolution for the Planck satellite) is significantly larger than unity, roughly if L & 300 Mpc/h. We stress

therefore that this signature can uniquely discriminate the presence of a Void: in fact, if the Cold Spot is

just a statistical fluke and if there is no Void (or a similar object) in the line of sight, the lensing effect

would be absent. It is also clear from the plot that going to slightly higher resolutions (as can be obtained

by [15] or [16]) will probe the entire parameter space.

B. Contamination of fNL measurements

We want here to find out what is the impact of having a hypothetical huge Void in the line of sight

on the measurement of the primordial non-gaussianity parameter fNL. It is customary to analyze the

non-Gaussian signal via the quantity fNL. Its definition is given [10] for the so-called non-gaussianity of

local type, parameterizing the primordial curvature perturbations φ(x) as follows

φ(x) = φL(x) + fNL

(
φ2
L(x) − 〈φ2

L(x)〉
)

, (43)

where φL(x) is the linear Gaussian part of the perturbation. Generically, given a physical model (e.g. slow-

roll inflation), fNL is a function of the momenta, but it is usually assumed in quantitative data analyses

to be just a number. Single field minimally coupled slow-roll inflationary models predict generically very

small values, fNL = O(0.1) [10, 20, 21], while other models may predict larger values [10].

As discussed in [6], the RS effect leads to a large correction to 〈Bℓ1ℓ2ℓ3〉 for 2 ≤ ℓ ≤ 60. The Lensing

effect, instead, is much smaller at low-ℓ, but it can contaminate the signal at large ℓ, since it couples the

low-ℓ of the RS effect with the high ℓ of the primordial signal. We now estimate the amount of such a

contamination.

The primordial bispectrum coefficients can be written as [10]:

Bprim
ℓ1ℓ2ℓ3

= fNL B̃prim
ℓ1ℓ2ℓ3

, (44)
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where the B̃prim
ℓ1ℓ2ℓ3

have a specific form in terms of the primordial spectrum and the radiation transfer

function [10].

The impact on fNL due to the PLRS effect can be computed estimating the following ratio [10, 22]:

∆f
(PLRS)
NL (ℓmax) =

∑

2≤ℓ1≤ℓ2≤ℓ3≤ℓmax

B
(PLRS)
ℓ1ℓ2ℓ3

B̃prim

ℓ1ℓ2ℓ3

σ2
ℓ1ℓ2ℓ3

∑

2≤ℓ1≤ℓ2≤ℓ3≤ℓmax

(B̃prim

ℓ1ℓ2ℓ3
)2

σ2
ℓ1ℓ2ℓ3

. (45)

In general this is computationally very demanding, since it would require to compute the primordial B̃prim
ℓ1ℓ2ℓ3

up to very high multipoles. However, the effect due to the Void is dominated by squeezed triangles: since

one side is given by the RS effect which goes up at most to ℓ ∼ 80, in order to compute the cross-correlation

in the numerator of eq.(45) we only need the squeezed configurations also for the primordial effect. We may

give a rough estimate, using the so called flat-sky approximation, in which one of the ℓ’s is much smaller

than the other two. In this case we can write down a very simple expression for the b̃primℓ1ℓ2ℓ3
coefficients,

following [23]. As discussed in Appendix B, the result of this approximation turns out to be:

b̃primℓ1ℓ2ℓ2
≈ −12 〈C(P )

ℓ1
〉〈C(P )

ℓ2
〉 . (46)

The denominator of eq.(45) is instead a given quantity for a given experiment. In fact, the experimental

noise in σ2
ℓ1ℓ2ℓ3

at some high ℓmax (dependent on the experiment) becomes so large that the multipoles

ℓ > ℓmax do not contribute to the sum. The denominator in eq.(45) is roughly equal to 10−8 × ℓ2max, as

shown in [10].

Performing the sum we get a result which is of order of

∆f
(PLRS)
NL ≈ 10−5

(
A

7× 10−5

)(
Θ0

10−4

)

, (47)

Using the maximal value for A and Θ0, we can go up at most to 10−3. The result has some ℓmax dependence,

but it is always of the order of 10−5, even for ℓmax ∼ 2000.

V. CONCLUSIONS

Motivated by the so-called Cold Spot in the WMAP data, we have studied in this paper the impact on

CMB two and three point correlation functions of the presence of an anomalously large Void along the

line of sight, whose existence could be at the origin of the Cold Spot. In particular, we have extended the

analysis performed in [6] by including the Lensing effect on the CMB primordial photons.

For the power spectrum, the Primordial-Lensing coupling vanishes exactly. It leads, however, to non-zero

correlations between different ℓ′s in the off-diagonal two-point correlation functions. The Lensing-Lensing

coupling, instead, gives a non-zero signal in the power spectrum, which turns out to have a Signal-to-Noise

ratio of order unity already for WMAP sensitivity only if the Void radius L is extremely large: bigger than

about 1 Gpc/h (since the amplitude of the Lensing effect increases with L). The Signal-to-Noise ratio

turns out to be larger than unity for Planck sensitivity for L & 500 Mpc/h.

In addition, we pointed out an intriguing consequence of our analysis: it could be possible that the

existence of one (or several) large scale Void(s) in the sky appear not only as anomalies at low ℓ, but also

at high ℓ, through the lensing effect. In the case in which the Void is very large (i.e. L ∼ 1 Gpc/h), this



16

could be linked to the claimed detection of a hemispherical power asymmetry in the WMAP data [18],

which extends also to high multipoles (ℓ = 2− 600) [19].

For the bispectrum, there is a non-zero coupling between the Primordial fluctuations, the Rees-Sciama

effect (present at low ℓ) and the Lensing effect (present for any ℓ). This would provide a distinctive

signature in favor of a Large Void. In fact, its Signal-to-Noise exceeds unity for the Planck experiment if

the radius of the Void is at least about 300 Mpc/h. Higher resolution experiments will be able to detect

this non-gaussian signal also for smaller Void radii, covering the entire parameter space.

Finally, we have studied the impact of such a structure on the determination of the primordial non-

gaussianity, finding that the contamination is negligibly small.
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Note added: In the published version of this paper we neglected the dependence of the Lensing Potential

amplitude on the comoving distance of the Void, see eq. (9). The inclusion of this dependence actually

goes in the direction of strengthening the results discussed in the published version.

Appendix A: Inclusion of a cosmological constant

In this appendix we show how our results change by including the effect of a cosmological constant,

which has the qualitative effect of increasing the RS effect because a net redshift is already present at the

linear level in δ0 [5]. We remind the reader that in this case the effect usually goes under the name of

Integrated Sachs-Wolfe effect (ISW). Therefore this additional ISW effect is especially relevant when |δ0|
is much smaller than unity, which is the case if the Void radius is very large, but still not close to touch

the Last Scattering Surface (as can be seen in fig. 2).

For this estimate we use the calculations performed by [5], with the caveat that they are performed in a

different setup, with a different density profile, namely in the approximation in which the Void is uniformly

underdense and it is compensated by an overdense thin shell. In the limit of zero cosmological constant

our expression eq. (6) fully agrees with the amplitude derived in [5], except for our pre-factor which is

three times larger, probably due to the different shape of the profile. We use the expression, multiplied

by a factor of 3, given in [5] for the amplitude A of the (RS)+(ISW) effect in order to derive a relation

between the density contrast δ0 at the centre of the Void and the radius of the Void (in such a way that

A = (7 ± 3)× 10−5). This relation is shown in the left plot of fig. 7, choosing the matter density fraction

ΩM = 0.27. This can be directly compared with the left plot of fig. 2, for which ΩM = 1. Then, we

can plug the new relation for δ0 into our eq. (9), which allows us to reconstruct the value of L given a

measurement of the Lensing amplitude Θ0. We show the result for ΩM = 0.27 in the right plot of fig. 7,
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FIG. 7: Left: |δ0| as a function of L, with ΩM = 0.27 and for σ = 18◦, 10◦ and 6◦, from bottom to top. Right:
Plot of Θ0 as a function of L, with ΩM = 0.27. The curves corresponds, from top to bottom, to σ = 6◦, 10◦, 18◦.
In both plots, the shaded regions are obtained by varying A in the range (7± 3)× 10−5.

which can then be compared with the right plot of fig. 2 for which ΩM = 1.

For illustration, in fig. 8 we also plot the ratio of Θ0 obtained for ΩM = 1 over the one with ΩM = 0.27.

As we have anticipated, the ratio is larger than 1 in the regions of parameters where δ0 is much smaller

than unity. Anyhow, we stress again that this ratio is only a rough guide, given the fact that [5] is using a

different profile.
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FIG. 8: Ratio r defined as Θ0 with ΩM = 1 over Θ0 with ΩM = 0.27. The curves correspond to σ = 6◦, 10◦ and
18◦, from bottom to top, and to A = 7× 10−5.

Appendix B: Flat-sky approximation

We re-derive here the approximation for the bispectrum (46), following [23]. As a starting point we take

the expression:

bprimℓ1ℓ2ℓ3
= 2fNL

∫

r2dr[βℓ1 (r)βℓ2(r)αℓ3 (r) + βℓ1(r)αℓ2 (r)βℓ3(r) + αℓ1(r)βℓ2(r)βℓ3 (r)] , (B1)

where

βl(r) =
2

π

∫

k2dkP (k)jl(kr)∆l(k) , (B2)
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and

αl(r) =
2

π

∫

k2dkjl(kr)∆l(k) . (B3)

Here jl(kr) are the spherical Bessel functions, P (k) is the primordial power spectrum and ∆l(k) is the

radiation transfer function (which goes as ∆l(k) ≈ −jl(krD)/3 for large scales). Defining τO as the present

day value of conformal time, τR as the value at decoupling and rD = τ0 − τR as the comoving distance to

the surface of last scattering, the region of integration for r is over the sound horizon (from τO to τ0−2τR).

We can rewrite (B1) as:

bprimℓ1ℓ2ℓ3
=

16

π3
fNL

∫

k21dk1k
2
2dk2k

2
3dk3∆ℓ1(k1)∆ℓ2(k2)∆ℓ3(k3)Cℓ1ℓ2ℓ3(k1, k2, k3)[P (k1)P (k2) + cyc.] , (B4)

where we define Cℓ1ℓ2ℓ3(k1, k2, k3) ≡
∫
r2drjℓ1(k1r)jℓ2 (k2r)jℓ3 (k3r). In the limit of collapsed triangles,

ℓ1 ≪ ℓ2, ℓ3, we can approximate

Cℓ1ℓ2ℓ2(k1, k2, k3) ∼ jℓ1(k1rD)

∫

r2drjℓ2 (k2r)jℓ2 (k3r) , (B5)

and use the following property of the Bessel functions

∫

r2drjℓ2 (k2r)jℓ2 (k3r) ∼
π

2

δ(k2 − k3)

k22
. (B6)

Substituting this result into (B4) we find

bprimℓ1ℓ2ℓ2
∼ 8

π2
fNL

∫

k21dk1k
2
2dk2jℓ1(k1rD)∆ℓ1(k1)∆ℓ2(k2)∆ℓ2(k2)[P (k1)P (k2) + cyc.] . (B7)

This can be evaluated as

bℓ1ℓ2ℓ2 ∼ −12fNL〈C(P )
ℓ1

〉〈C(P )
ℓ2

〉 , (B8)

where we have used the fact that 〉C(P )
ℓ 〉 is given by:

〈C(P )
ℓ 〉 = 16π2

(2π)3

∫

dkk2|∆ℓ(k)|P (k) (B9)

and where we have neglected the last term in the cyclic permutations, which is proportional to P (k2)
2,

since P (k1) ≫ P (k2).

[1] G. Hinshaw et al. [WMAP Collaboration], arXiv:0803.0732 [astro-ph].
[2] M. Cruz, E. Martinez-Gonzalez, P. Vielva and L. Cayon, Mon. Not. Roy. Astron. Soc. 356, 29 (2005)

[arXiv:astro-ph/0405341].
[3] M. Cruz, M. Tucci, E. Martinez-Gonzalez and P. Vielva, Mon. Not. Roy. Astron. Soc. 369, 57 (2006)

[arXiv:astro-ph/0601427]; M. Cruz, L. Cayon, E. Martinez-Gonzalez, P. Vielva and J. Jin, Astrophys. J. 655,
11 (2007) [arXiv:astro-ph/0603859]. M. Cruz, E. Martinez-Gonzalez and P. Vielva, arXiv:0901.1986 [astro-ph].

[4] K. Tomita, Phys. Rev. D 72, 103506 (2005) [Erratum-ibid. D 73, 029901 (2006)] [arXiv:astro-ph/0509518].
[5] K. T. Inoue and J. Silk, Astrophys. J. 648, 23 (2006) [arXiv:astro-ph/0602478]; K. T. Inoue and J. Silk,

Astrophys. J. 664, 650 (2007) [arXiv:astro-ph/0612347].

http://arxiv.org/abs/0803.0732
http://arxiv.org/abs/astro-ph/0405341
http://arxiv.org/abs/astro-ph/0601427
http://arxiv.org/abs/astro-ph/0603859
http://arxiv.org/abs/0901.1986
http://arxiv.org/abs/astro-ph/0509518
http://arxiv.org/abs/astro-ph/0602478
http://arxiv.org/abs/astro-ph/0612347


19

[6] I. Masina and A. Notari, JCAP 0902, 019 (2009) [arXiv:0808.1811 [astro-ph]].
[7] M. J. Rees and D. W. Sciama, Nature 217, 511 (1968).
[8] S. Das and D. N. Spergel, arXiv:0809.4704 [astro-ph].
[9] M. Cruz, N. Turok, P. Vielva, E. Martinez-Gonzalez and M. Hobson, Science 318, 1612 (2007) [arXiv:0710.5737

[astro-ph]];M. Cruz, E. Martinez-Gonzalez, P. Vielva, J. M. Diego, M. Hobson and N. Turok, arXiv:0804.2904
[astro-ph]. R. A. Battye, B. Garbrecht and A. Pilaftsis, JCAP 0809, 020 (2008) [arXiv:0807.1729 [hep-ph]].

[10] N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto, Phys. Rept. 402, 103 (2004) [arXiv:astro-ph/0406398].
[11] F. Bernardeau, Astron. Astrophys. 324, 15 (1997) [arXiv:astro-ph/9611012].
[12] A. Hajian, T. Souradeep and N. J. Cornish, Astrophys. J. 618, L63 (2004) [arXiv:astro-ph/0406354]. A. Hajian

and T. Souradeep, arXiv:astro-ph/0501001.
[13] A. Lewis and A. Challinor, Phys. Rept. 429, 1 (2006) [arXiv:astro-ph/0601594].
[14] W. Hu, Phys. Rev. D 62, 043007 (2000) [arXiv:astro-ph/0001303].
[15] http://www.physics.princeton.edu/act
[16] http://pole.uchicago.edu/spt/
[17] P. D. Naselsky, P. R. Christensen, P. Coles, O. Verkhodanov, D. Novikov and J. Kim, arXiv:0712.1118 [astro-

ph]; Z. Hou, A. J. Banday and K. M. Gorski, arXiv:0903.4446 [astro-ph.CO].
[18] H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Gorski and P. B. Lilje, Astrophys. J. 605, 14 (2004) [Erratum-

ibid. 609, 1198 (2004)] [arXiv:astro-ph/0307507]; H. K. Eriksen, A. J. Banday, K. M. Gorski, F. K. Hansen and
P. B. Lilje, Astrophys. J. 660, L81 (2007) [arXiv:astro-ph/0701089]; D. Pietrobon, A. Amblard, A. Balbi, P. Ca-
bella, A. Cooray and D. Marinucci, Phys. Rev. D 78, 103504 (2008) [arXiv:0809.0010 [astro-ph]]. J. Hoftuft,
H. K. Eriksen, A. J. Banday, K. M. Gorski, F. K. Hansen and P. B. Lilje, arXiv:0903.1229 [astro-ph.CO].

[19] F. K. Hansen, A. J. Banday, K. M. Gorski, H. K. Eriksen and P. B. Lilje, arXiv:0812.3795 [astro-ph].
[20] J. M. Maldacena, JHEP 0305, 013 (2003) [arXiv:astro-ph/0210603].
[21] V. Acquaviva, N. Bartolo, S. Matarrese and A. Riotto, Nucl. Phys. B 667, 119 (2003) [arXiv:astro-ph/0209156].
[22] P. Serra and A. Cooray, Phys. Rev. D 77, 107305 (2008) [arXiv:0801.3276 [astro-ph]].
[23] D. Babich and M. Zaldarriaga, Phys. Rev. D 70, 083005 (2004) [arXiv:astro-ph/0408455].

http://arxiv.org/abs/0808.1811
http://arxiv.org/abs/0809.4704
http://arxiv.org/abs/0710.5737
http://arxiv.org/abs/0804.2904
http://arxiv.org/abs/0807.1729
http://arxiv.org/abs/astro-ph/0406398
http://arxiv.org/abs/astro-ph/9611012
http://arxiv.org/abs/astro-ph/0406354
http://arxiv.org/abs/astro-ph/0501001
http://arxiv.org/abs/astro-ph/0601594
http://arxiv.org/abs/astro-ph/0001303
http://www.physics.princeton.edu/act
http://pole.uchicago.edu/spt/
http://arxiv.org/abs/0712.1118
http://arxiv.org/abs/0903.4446
http://arxiv.org/abs/astro-ph/0307507
http://arxiv.org/abs/astro-ph/0701089
http://arxiv.org/abs/0809.0010
http://arxiv.org/abs/0903.1229
http://arxiv.org/abs/0812.3795
http://arxiv.org/abs/astro-ph/0210603
http://arxiv.org/abs/astro-ph/0209156
http://arxiv.org/abs/0801.3276
http://arxiv.org/abs/astro-ph/0408455

	I Introduction
	II A Void in the line of sight: Rees-Sciama and Lensing effects
	A Rees-Sciama Temperature Profile
	B Lensing Temperature Profile
	C Decomposition in spherical harmonics

	III Two-point functions
	IV Bispectrum
	A Signal-to-Noise ratio
	B Contamination of fNL measurements

	V Conclusions
	 Acknowledgments
	A Inclusion of a cosmological constant
	B Flat-sky approximation
	 References

