The binding between Teicoplanin glycopeptide antibiotic and some dipeptides and amino acids has been studied by nonlinear liquid chromatography. A Teicoplanin-based chiral stationary phase, specifically designed to achieve maximum selectivity and loading by reducing non-specific interactions, has been prepared and packed into a microbore column. The adsorption isotherms of the enantiomers of Proline, Alanine, and Alanine-Alanine (Ala- Ala) have been measured through frontal analysis. The experimental binding data have been interpreted in the context of the ordinary homogeneous Michaelis-Menten model and by considering an heterogeneous model that accounts for a broad adsorption energy distribution (AED). AED has been achieved by the analysis of adsorption isotherms. Besides confirming the importance of the terminal D-Ala-D-Ala moiety in the molecular recognition between the dipeptide and the macrocyclic antibiotic Teicoplanin (it was found that Teicoplanin behaves as a molecular filter toward the enantiomers of Ala-Ala), this study shows that a heterogeneous adsorption model is needed for the correct interpretation of binding data.

Binding of Dipeptides and Amino Acids to Teicoplanin Chiral Stationary Phase: Apparent Homogeneity of Some Heterogeneous Systems

CAVAZZINI, Alberto;PASTI, Luisa;DONDI, Francesco;COSTA, Valentina;GASPARRINI, Francesco;
2009

Abstract

The binding between Teicoplanin glycopeptide antibiotic and some dipeptides and amino acids has been studied by nonlinear liquid chromatography. A Teicoplanin-based chiral stationary phase, specifically designed to achieve maximum selectivity and loading by reducing non-specific interactions, has been prepared and packed into a microbore column. The adsorption isotherms of the enantiomers of Proline, Alanine, and Alanine-Alanine (Ala- Ala) have been measured through frontal analysis. The experimental binding data have been interpreted in the context of the ordinary homogeneous Michaelis-Menten model and by considering an heterogeneous model that accounts for a broad adsorption energy distribution (AED). AED has been achieved by the analysis of adsorption isotherms. Besides confirming the importance of the terminal D-Ala-D-Ala moiety in the molecular recognition between the dipeptide and the macrocyclic antibiotic Teicoplanin (it was found that Teicoplanin behaves as a molecular filter toward the enantiomers of Ala-Ala), this study shows that a heterogeneous adsorption model is needed for the correct interpretation of binding data.
Cavazzini, Alberto; Pasti, Luisa; Dondi, Francesco; M., Finessi; Costa, Valentina; Gasparrini, Francesco; A., Ciogli; F., Bedani
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1377491
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact