Direct monitoring of the free Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) is an important but still unsolved experimental problem. We have shown that a Ca(2+)-sensitive photoprotein, aequorin, can be addressed to defined subcellular compartments by adding the appropriate targeting sequences. By engineering a new aequorin chimera with reduced Ca2+ affinity, retained in the ER lumen via interaction of its N-terminus with the endogenous resident protein BiP, we show here that, after emptying the ER, Ca2+ is rapidly re-accumulated up to concentrations of > 100 microM, thus consuming most of the reporter photoprotein. An estimate of the steady-state Ca2+ concentration was obtained using Sr2+, a well-known Ca2+ surrogate which elicits a significantly slower rate of aequorin consumption. Under conditions in which the rate and extent of Sr2+ accumulation in the ER closely mimick those of Ca2+, the steady-state mean lumenal Sr2+ concentration ([Sr2+]er) was approximately 2 mM. Receptor stimulation causes, in a few seconds, a 3-fold decrease of the [Sr2+]er, whereas specific inhibition of the ER Ca2+ ATPase leads to an approximately 10-fold drop in a few minutes.

Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells.

RIZZUTO, Rosario
1995

Abstract

Direct monitoring of the free Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) is an important but still unsolved experimental problem. We have shown that a Ca(2+)-sensitive photoprotein, aequorin, can be addressed to defined subcellular compartments by adding the appropriate targeting sequences. By engineering a new aequorin chimera with reduced Ca2+ affinity, retained in the ER lumen via interaction of its N-terminus with the endogenous resident protein BiP, we show here that, after emptying the ER, Ca2+ is rapidly re-accumulated up to concentrations of > 100 microM, thus consuming most of the reporter photoprotein. An estimate of the steady-state Ca2+ concentration was obtained using Sr2+, a well-known Ca2+ surrogate which elicits a significantly slower rate of aequorin consumption. Under conditions in which the rate and extent of Sr2+ accumulation in the ER closely mimick those of Ca2+, the steady-state mean lumenal Sr2+ concentration ([Sr2+]er) was approximately 2 mM. Receptor stimulation causes, in a few seconds, a 3-fold decrease of the [Sr2+]er, whereas specific inhibition of the ER Ca2+ ATPase leads to an approximately 10-fold drop in a few minutes.
1995
Montero, M; Brini, M; Marsault, R; Alvarez, J; Sitia, R; Pozzan, T; Rizzuto, Rosario
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1208505
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 268
  • ???jsp.display-item.citation.isi??? 253
social impact