A common technique to compensate process variation induced performance deviations during post-silicon testing consists of the dynamic adaptation of processor voltage. This however comes at a significant power cost. We envision multi supply voltage design (MSV) as a promising technique to mitigate such power overhead. Voltage islands are widely recognized as the state-of-the-art in MSV design. In this paper, we develop a novel design methodology that leverages voltage islands to compensate process variations through a commercial synthesis flow. Possible violation scenarios of performance requirements in fabricated chips are pre-characterized at design time through statistical static timing analysis. Then, during post-silicon testing the supply voltage of a proper number of voltage islands is raised depending on the actual violation scenario, thus bringing performance back within nominal values. Voltage islands are generated by exploiting cell proximity for minimal perturbation of performance pre-optimized placements.

Process Variation Tolerant Pipeline Design Through a Placement-Aware Multiple Voltage Island Design Style

BONESI, Stefano;BERTOZZI, Davide;
2008

Abstract

A common technique to compensate process variation induced performance deviations during post-silicon testing consists of the dynamic adaptation of processor voltage. This however comes at a significant power cost. We envision multi supply voltage design (MSV) as a promising technique to mitigate such power overhead. Voltage islands are widely recognized as the state-of-the-art in MSV design. In this paper, we develop a novel design methodology that leverages voltage islands to compensate process variations through a commercial synthesis flow. Possible violation scenarios of performance requirements in fabricated chips are pre-characterized at design time through statistical static timing analysis. Then, during post-silicon testing the supply voltage of a proper number of voltage islands is raised depending on the actual violation scenario, thus bringing performance back within nominal values. Voltage islands are generated by exploiting cell proximity for minimal perturbation of performance pre-optimized placements.
2008
9783981080131
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/534177
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 11
social impact