We tested the hypothesis that the individual ventilatory adaptation to high altitude (HA, 5050 m) may influence renal water excretion in response to water loading. In 8 healthy humans (33+/-4 S.D. years) we studied, at sea level (SL) and at HA, resting ventilation (VE), arterial oxygen saturation (SpO2), urinary output after water loading (WL, 20 mL/kg), and total body water (TBW). Ventilatory response to HA was defined as the difference in resting VE over SpO2 (DeltaVE/DeltaSpO2) from SL to HA. At HA, a significant increase in urinary volume after the first hour from WL (%WLt0-60) was observed. Significant correlations were found between DeltaVE/DeltaSpO2 versus %WLt0-60 at HA and versus changes in TBW, from SL to HA. In conclusion, in healthy subjects the ventilatory response to HA influences water balance and correlates with kidney response to WL. A higher ventilatory response at HA, allowing a more efficient water renal handling, is likely to be a protective mechanisms from altitude illness.
Relationship between individual ventilatory response and acute renal water excretion at high altitude
CAMPIGOTTO, FEDERICA;GENNARI, Alessandra;POMIDORI, Luca;COGO, Annaluisa;
2008
Abstract
We tested the hypothesis that the individual ventilatory adaptation to high altitude (HA, 5050 m) may influence renal water excretion in response to water loading. In 8 healthy humans (33+/-4 S.D. years) we studied, at sea level (SL) and at HA, resting ventilation (VE), arterial oxygen saturation (SpO2), urinary output after water loading (WL, 20 mL/kg), and total body water (TBW). Ventilatory response to HA was defined as the difference in resting VE over SpO2 (DeltaVE/DeltaSpO2) from SL to HA. At HA, a significant increase in urinary volume after the first hour from WL (%WLt0-60) was observed. Significant correlations were found between DeltaVE/DeltaSpO2 versus %WLt0-60 at HA and versus changes in TBW, from SL to HA. In conclusion, in healthy subjects the ventilatory response to HA influences water balance and correlates with kidney response to WL. A higher ventilatory response at HA, allowing a more efficient water renal handling, is likely to be a protective mechanisms from altitude illness.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.