Resistance to imatinib mesylate is an emergent problem in the treatment of Bcr-Abl expressing myelogenous leukemias and additional therapeutic strategies are required. We observed that galangin, a non-toxic, naturally occurring flavonoid was effective as anti-proliferative, and apoptotic agent in Bcr-Abl expressing K562 and KCL22 cells and in imatinib mesylate resistant K562-R and KCL22-R cells. Galangin induced an arrest of cells in G0-G1phase of cell cycle and a decrease in pRb, cdk4, cdk1, cycline B levels; moreover, it was able to induce a monocytic differentiation of leukemic Bcr-Abl+ cells. Of note, galangin caused a decrease in Bcl-2 levels and markedly increased the apoptotic activity of imatinib both in sensitive or imatinib-resistant Bcr-Abl+ cell lines. In contrast, flavonoids unable to modify the Bcl-2 intracellular levels, such as fisetin and chrysin, did not increase the apoptotic effect of imatinib. These data suggest that galangin is an interesting candidate for a combination therapy in the treatment of imatinib-resistant leukemias.

Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells

SIMONI, Daniele
2008

Abstract

Resistance to imatinib mesylate is an emergent problem in the treatment of Bcr-Abl expressing myelogenous leukemias and additional therapeutic strategies are required. We observed that galangin, a non-toxic, naturally occurring flavonoid was effective as anti-proliferative, and apoptotic agent in Bcr-Abl expressing K562 and KCL22 cells and in imatinib mesylate resistant K562-R and KCL22-R cells. Galangin induced an arrest of cells in G0-G1phase of cell cycle and a decrease in pRb, cdk4, cdk1, cycline B levels; moreover, it was able to induce a monocytic differentiation of leukemic Bcr-Abl+ cells. Of note, galangin caused a decrease in Bcl-2 levels and markedly increased the apoptotic activity of imatinib both in sensitive or imatinib-resistant Bcr-Abl+ cell lines. In contrast, flavonoids unable to modify the Bcl-2 intracellular levels, such as fisetin and chrysin, did not increase the apoptotic effect of imatinib. These data suggest that galangin is an interesting candidate for a combination therapy in the treatment of imatinib-resistant leukemias.
2008
Manlio, Tolomeo; Stefania, Grimaudo; Antonietta Di, Cristina; Rosaria M., Pipitone; Luisa, Dusonchet; Maria, Meli; Lucia, Crosta; Nicola, Gebbia; Francesco Paolo, Invidiata; Lucina, Titone; Simoni, Daniele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/532399
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 52
social impact