In a planar mechanism, the position of the instant centers reveals important pieces of information about its static and kinematic behaviors. Such pieces of information are useful for designing the mechanism. Unfortunately, when the mechanism architecture becomes complex, common methods to locate the instant centers, which are based on the direct application of the Aronold–Kennedy theorem, fail. Indeterminate linkages are single-degree-of-freedom (single-dof) planar linkages where the secondary instant centers cannot be found by direct application of the Aronold–Kennedy theorem. This paper presents an analytical method to locate all the instant centers of any single-dof planar mechanism, which, in particular, succeeds in determining the instant centers of indeterminate linkages. In order to illustrate the proposed method, it will be applied to locate the secondary instant centers of the double butterfly linkage and of the single flier eight-bar linkage.
An Algorithm for Analytically Calculating the Positions of the Secondary Instant Centers of Indeterminate Linkages
DI GREGORIO, Raffaele
2008
Abstract
In a planar mechanism, the position of the instant centers reveals important pieces of information about its static and kinematic behaviors. Such pieces of information are useful for designing the mechanism. Unfortunately, when the mechanism architecture becomes complex, common methods to locate the instant centers, which are based on the direct application of the Aronold–Kennedy theorem, fail. Indeterminate linkages are single-degree-of-freedom (single-dof) planar linkages where the secondary instant centers cannot be found by direct application of the Aronold–Kennedy theorem. This paper presents an analytical method to locate all the instant centers of any single-dof planar mechanism, which, in particular, succeeds in determining the instant centers of indeterminate linkages. In order to illustrate the proposed method, it will be applied to locate the secondary instant centers of the double butterfly linkage and of the single flier eight-bar linkage.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.