We study localized light bullets and X waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multidimensional nonlinear waves. For X waves we show that a local cascading limit in terms of a nonlinear Schrödinger equation does not exist—one needs to use the nonlocal description, because the nonlocal response function does not converge toward a function. Also, we use the nonlocal theory to show that the coupling to the second harmonic is able to generate an X shape in the fundamental field despite having anomalous dispersion, in contrast to the predictions of the cascading limit.

Nonlocal description of X-waves in quadratic nonlinear materials

TRILLO, Stefano
2006

Abstract

We study localized light bullets and X waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multidimensional nonlinear waves. For X waves we show that a local cascading limit in terms of a nonlinear Schrödinger equation does not exist—one needs to use the nonlocal description, because the nonlocal response function does not converge toward a function. Also, we use the nonlocal theory to show that the coupling to the second harmonic is able to generate an X shape in the fundamental field despite having anomalous dispersion, in contrast to the predictions of the cascading limit.
2006
P. V., Larsen; M. P., Sorensen; O., Bang; W. Z., Krolikowski; Trillo, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/525304
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
social impact