In the present paper, the physical meaning of JV (namely, the classic J-integral applied to either sharp V-notch) is discussed. Consider a Cartesian reference frame having the x-axis parallel to the notch bisector, each mode of JV, for a given circular path, is proportional to the correspondent mode of the classic J-integral of a virtual crack having length equal to the path radius and emanating from the tip of the V-notch. Analytical and numerical results have been performed for linear elastic materials. Additionally, in order to verify the formulations of JV, experimental result of embedded cracks of sharp V-notch was considered. Then, by introducing a characteristic path radius ρ*, assumed to be dependent only on the material properties, the JV parameter was used for the estimation of the static failure load of sharp V-notches specimens under mode I loading. Furthermore, the JVρ parameter (namely, the classic J-integral applied to U-rounded notches) was used to analyze the static failure of two new series of specimens with double U-notches made of brittle material (PMMA and PVC glass) subjected to tensile loading. This method allowed us to prove that when the ratio between the notch tip radius and ρ* is small the approach agrees with the classic J-integral, whereas when ρ* becomes small with respect to the notch tip radius, the JVρ method agrees with the classic peak stress approach.

Use of J-integral to predict static failures in sharp V-notches and rounded U-notches

LIVIERI, Paolo
2008

Abstract

In the present paper, the physical meaning of JV (namely, the classic J-integral applied to either sharp V-notch) is discussed. Consider a Cartesian reference frame having the x-axis parallel to the notch bisector, each mode of JV, for a given circular path, is proportional to the correspondent mode of the classic J-integral of a virtual crack having length equal to the path radius and emanating from the tip of the V-notch. Analytical and numerical results have been performed for linear elastic materials. Additionally, in order to verify the formulations of JV, experimental result of embedded cracks of sharp V-notch was considered. Then, by introducing a characteristic path radius ρ*, assumed to be dependent only on the material properties, the JV parameter was used for the estimation of the static failure load of sharp V-notches specimens under mode I loading. Furthermore, the JVρ parameter (namely, the classic J-integral applied to U-rounded notches) was used to analyze the static failure of two new series of specimens with double U-notches made of brittle material (PMMA and PVC glass) subjected to tensile loading. This method allowed us to prove that when the ratio between the notch tip radius and ρ* is small the approach agrees with the classic J-integral, whereas when ρ* becomes small with respect to the notch tip radius, the JVρ method agrees with the classic peak stress approach.
2008
Livieri, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/525083
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 103
  • ???jsp.display-item.citation.isi??? 98
social impact