Nitrogen and phosphorus were added experimentally in a bog in the southern Alps. It was hypothesized that alleviating nutrient limitation will increase vascular plant cover. As a consequence, more carbon will be fixed through higher rates of net ecosystem CO2 exchange (NEE). The vascular cover did increase at the expense of Sphagnum mosses. However, such vegetation changes were largely independent of the treatment and were probably triggered by an exceptional heatwave in summer 2003. Contrary to the tested hypothesis, NEE was unaffected by the nutrient treatments but was strongly influenced by temperature and water-table depth. In particular, ecosystem respiration in the hot summer of 2003 increased dramatically, presumably owing to enhanced heterotrophic respiration in an increased oxic peat layer. At the end of the experiment, the Sphagnum cover decreased significantly in the nitrogen-fertilized treatment at hummock microhabitats. In the long term, this will imply a proportionally greater accumulation of vascular litter, more easily decomposable than the recalcitrant Sphagnum litter. As a result, rates of carbon fixation may decrease because of stimulated respiration. © The Authors (2008).

Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and carbon dioxide exchange in an alpine bog

GERDOL, Renato
Primo
;
BRAGAZZA, Luca
Secondo
;
BRANCALEONI, Lisa
Ultimo
2008

Abstract

Nitrogen and phosphorus were added experimentally in a bog in the southern Alps. It was hypothesized that alleviating nutrient limitation will increase vascular plant cover. As a consequence, more carbon will be fixed through higher rates of net ecosystem CO2 exchange (NEE). The vascular cover did increase at the expense of Sphagnum mosses. However, such vegetation changes were largely independent of the treatment and were probably triggered by an exceptional heatwave in summer 2003. Contrary to the tested hypothesis, NEE was unaffected by the nutrient treatments but was strongly influenced by temperature and water-table depth. In particular, ecosystem respiration in the hot summer of 2003 increased dramatically, presumably owing to enhanced heterotrophic respiration in an increased oxic peat layer. At the end of the experiment, the Sphagnum cover decreased significantly in the nitrogen-fertilized treatment at hummock microhabitats. In the long term, this will imply a proportionally greater accumulation of vascular litter, more easily decomposable than the recalcitrant Sphagnum litter. As a result, rates of carbon fixation may decrease because of stimulated respiration. © The Authors (2008).
2008
Gerdol, Renato; Bragazza, Luca; Brancaleoni, Lisa
File in questo prodotto:
File Dimensione Formato  
NPH_Gerdol_2008.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 457.78 kB
Formato Adobe PDF
457.78 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/524989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 53
social impact