We have identified a novel endoplasmic reticulum (ER)-resident protein, named "calumin", which is expressed in various tissues. This protein has a molecular mass of approximately 60 kDa and is composed of an ER-luminal domain rich in acidic residues, a single transmembrane segment, and a large cytoplasmic domain. Biochemical experiments demonstrated that the amino-terminal luminal domain is capable of binding Ca2+ with a high capacity and moderate affinity. In embryonic fibroblasts derived from calumin-knockout mice exhibiting embryonic and neonatal lethality, fluorometric Ca2+ imaging detected insufficient Ca2+ contents in intracellular stores and attenuated store-operated Ca2+ entry. Moreover, the mutant fibroblasts were highly sensitive to cell death induced by ER stress. These observations suggest that calumin plays an essential role in ER Ca2+ handling and is also implicated in signaling from the ER, which is closely associated with cell-fate decision

Calumin, a novel Ca2+-binding transmembrane protein on the endoplasmic reticulum

TREVES, Susan Nella;ZORZATO, Francesco;
2007

Abstract

We have identified a novel endoplasmic reticulum (ER)-resident protein, named "calumin", which is expressed in various tissues. This protein has a molecular mass of approximately 60 kDa and is composed of an ER-luminal domain rich in acidic residues, a single transmembrane segment, and a large cytoplasmic domain. Biochemical experiments demonstrated that the amino-terminal luminal domain is capable of binding Ca2+ with a high capacity and moderate affinity. In embryonic fibroblasts derived from calumin-knockout mice exhibiting embryonic and neonatal lethality, fluorometric Ca2+ imaging detected insufficient Ca2+ contents in intracellular stores and attenuated store-operated Ca2+ entry. Moreover, the mutant fibroblasts were highly sensitive to cell death induced by ER stress. These observations suggest that calumin plays an essential role in ER Ca2+ handling and is also implicated in signaling from the ER, which is closely associated with cell-fate decision
2007
Zhang, M; Yamazaki, T; Yazawa, M; Treves, Susan Nella; Nishi, M; Murai, M; Shibata, E; Zorzato, Francesco; Takeshima, H.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/520797
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact