Multiminicore disease is a recessive congenital myopathy characterized by the presence of small cores or areas lacking oxidative enzymes, in skeletal muscle fibres. From a clinical point of view, the condition is widely heterogeneous and at least four phenotypes have been identified; genetic analysis has revealed that most patients with the classical form of multiminicore characterized by rigidity of the spine, early onset and respiratory impairment harbour recessive mutations in the SEPN1 gene, whereas the majority of patients belonging to the other categories, including patients with ophthalmoplegia or patients with a phenotype similar to central core disease, carry recessive mutations in the RYR1. In the present review we discuss the most recent findings on the functional effect of mutations in SEPN1 and RYR1 and discuss how they may adversely affect muscle function and lead to the clinical phenotype.
Functional effects of mutations identified in patients with multiminicore disease
ZORZATO, Francesco;TREVES, Susan Nella
2007
Abstract
Multiminicore disease is a recessive congenital myopathy characterized by the presence of small cores or areas lacking oxidative enzymes, in skeletal muscle fibres. From a clinical point of view, the condition is widely heterogeneous and at least four phenotypes have been identified; genetic analysis has revealed that most patients with the classical form of multiminicore characterized by rigidity of the spine, early onset and respiratory impairment harbour recessive mutations in the SEPN1 gene, whereas the majority of patients belonging to the other categories, including patients with ophthalmoplegia or patients with a phenotype similar to central core disease, carry recessive mutations in the RYR1. In the present review we discuss the most recent findings on the functional effect of mutations in SEPN1 and RYR1 and discuss how they may adversely affect muscle function and lead to the clinical phenotype.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.