This work is concerned with the convergence properties and the numerical analysis of the preconditioned conjugate gradient (PCG) method applied to the solution of indefinite linear systems arising in nonlinear optimization. Our approach is based on the choice of quasidefinite preconditioners and of a suitable factorization routine. Some theoretical and numerical results about these preconditioners are obtained. Furthermore, we show the behaviour of the PCG method for different formulations of the indefinite system and we compare the effectiveness of the proposed variants.

On the solution of indefinite systems arising in nonlinear programming problems

BONETTINI, Silvia;RUGGIERO, Valeria;TINTI, Federica
2007

Abstract

This work is concerned with the convergence properties and the numerical analysis of the preconditioned conjugate gradient (PCG) method applied to the solution of indefinite linear systems arising in nonlinear optimization. Our approach is based on the choice of quasidefinite preconditioners and of a suitable factorization routine. Some theoretical and numerical results about these preconditioners are obtained. Furthermore, we show the behaviour of the PCG method for different formulations of the indefinite system and we compare the effectiveness of the proposed variants.
2007
Bonettini, Silvia; Ruggiero, Valeria; Tinti, Federica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/519441
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact