In this paper we study the problem of the discrepancy of Euler's phi-function and, extending a result of Lehmer, we give new examples in which the order of the discrepancy is maximum. Lehmer proved his result only for numbers N which are composed of primes congruent to -1 mod q, with q>1. We extend this result so that the assumption regarding the residue classes moq q of the primes p composing N is far weaker.

An extension of a result of Lehmer on numbers coprime to n

CODECA', Paolo;NAIR, Mohan K.
2008

Abstract

In this paper we study the problem of the discrepancy of Euler's phi-function and, extending a result of Lehmer, we give new examples in which the order of the discrepancy is maximum. Lehmer proved his result only for numbers N which are composed of primes congruent to -1 mod q, with q>1. We extend this result so that the assumption regarding the residue classes moq q of the primes p composing N is far weaker.
2008
Codeca', Paolo; Nair, Mohan K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/519440
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact